首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific substitution into the anticodon loop of yeast tyrosine transfer RNA   总被引:11,自引:0,他引:11  
L A Bare  O C Uhlenbeck 《Biochemistry》1986,25(19):5825-5830
The aminoacylation kinetics of 19 different variants of yeast tRNATyr with nucleotide substitutions in positions 33-35 were determined. Substitution of the conserved uridine-33 does not alter the rate of aminoacylation. However, substitution of the anticodon position 34 or position 35 reduces Km from 2- to 10-fold and Vmax as much as 2-fold, depending on the nucleotide inserted. The ochre and amber suppressor tRNAsTyr both showed about a 7-fold reduction in Vmax/Km. Data from tRNATyr with different modified nucleotides at position 35 suggest that specific hydrogen bonds form between the synthetase and both the N1 and N3 hydrogens of psi-35. The effect of simultaneous substitutions at positions 34 and 35 can be predicted reasonably well by combining the effects of single substitutions. These data suggest that yeast tyrosyl-tRNA synthetase interacts with positions 34 and 35 of the anticodon of tRNATyr and opens the possibility that nonsense suppressor efficiency may be mediated by the level of aminoacylation.  相似文献   

2.
A G Bruce  O C Uhlenbeck 《Biochemistry》1982,21(17):3921-3926
Thirteen different yeast tRNAPhe variants with single nucleotide changes in positions 34-37 in the anticodon region were prepared by an enzymatic procedure described previously. Aminoacylation kinetics using purified yeast phenylalanyl-tRNA synthetase revealed that the level of aminoacylation was very different for different sequences inserted. The low level of aminoacylation was the result of a steady state between a slow forward reaction rate and spontaneous deacylation of the product. Aminoacylation kinetics performed at higher synthetase concentrations revealed that substitution at position 34 in tRNAPhe decreased the Km nearly 10-fold but only had a small effect on Vmax. Similar substitutions at positions 35, 36, and 37 had a lesser effect. These data suggest a sequence-specific contact between the anticodon of yeast tRNAPhe and the cognate synthetase.  相似文献   

3.
4.
5.
In vitro conversion of a methionine to a glutamine-acceptor tRNA   总被引:13,自引:0,他引:13  
L H Schulman  H Pelka 《Biochemistry》1985,24(25):7309-7314
A derivative of Escherichia coli tRNAfMet containing an altered anticodon sequence, CUA, has been enzymatically synthesized in vitro. The variant tRNA was prepared by excision of the normal anticodon, CAU, in a limited digestion of intact tRNAfMet with RNase A, followed by insertion of the CUA sequence into the anticodon loop with T4 RNA ligase and polynucleotide kinase. The altered methionine tRNA showed a large enhancement in the rate of aminoacylation by glutaminyl-tRNA synthetase and a large decrease in the rate of aminoacylation by methionyl-tRNA synthetase. Measurement of kinetic parameters for the charging reaction by the cognate and noncognate enzymes revealed that the modified tRNA is a better acceptor for glutamine than for methionine. The rate of mischarging is similar to that previously reported for a tryptophan amber suppressor tRNA containing the anticodon CUA, su+7 tRNATrp, which is aminoacylated with glutamine both in vivo and in vitro [Yaniv, M., Folk, W. R., Berg, P., & Soll, L. (1974) J. Mol. Biol. 86, 245-260; Yarus, M., Knowlton, R. E., & Soll, L. (1977) in Nucleic Acid-Protein Recognition (Vogel, H., Ed.) pp 391-408, Academic Press, New York]. The present results provide additional evidence that the specificity of aminoacylation by glutaminyl-tRNA synthetase is sensitive to small changes in the nucleotide sequence of noncognate tRNAs and that uridine in the middle position of the anticodon is involved in the recognition of tRNA substrates by this enzyme.  相似文献   

6.
Contacts between the tRNA-like domain in brome mosaic virus RNA and yeast tyrosyl-tRNA synthetase have been determined by footprinting with enzymatic probes. Regions in which the synthetase caused protections indicative of direct interaction coincide with loci identified by mutational studies as being important for efficient tyrosylation [Dreher, T. W. & Hall, T. C. (1988) J. Mol. Biol. 201, 41-55]. Additional extensive contacts were found upstream of the core of the tRNA-like structure. In parallel, the contacts of yeast tRNATyr with its cognate synthetase were determined by the same methodology and comparison of protected nucleotides in the two RNAs has permitted the assignment of structural analogies between domains in the viral tRNA-like structure and tRNATyr. Amino acid acceptor stems are similarly recognized by yeast tyrosyl-tRNA synthetase in the two RNAs, indicating that the pseudoknotted fold in the viral RNA does not perturb the interaction with the synthetase. A further important analogy appears between the anticodon/D arm of the L-conformation of tRNAs and a complex branched arm of the viral tRNA-like structure. However, no apparent anticodon triplet exists in the viral RNA. These results suggest that the major determinants for tyrosylation of yeast tRNATyr lie outside the anticodon stem and loop, possibly in the amino acid acceptor stem.  相似文献   

7.
A specific chemical modification of histidyl residues in tyrosyl-tRNA synthetase by diethyl pyrocarbonate was performed. It is shown that five of sixteen histidyl residues can react with diethyl pyrocarbonate in the native conditions. Modification of two histidyl residues per dimer results in the inactivation of tyrosyl-tRNA synthetase in both steps of the tRNATyr aminoacylation. All substrates protect tyrosyl-tRNA synthetase against inactivation with diethyl pyrocarbonate, the most effective protector being combination of ATP and tyrosine. Histidyl residues of tyrosyl-tRNA synthetase are suggested to be involved in the catalytic mechanism of aminoacylation of tRNATyr.  相似文献   

8.
The interaction between phenylalanyl-tRNA synthetase from yeast and Escherichia coli and tRNAPhe (yeast), tRNASer (yeast), tRNA1Val (E. coli) has been investigated by ultracentrifugation analysis, fluorescence titrations and fast kinetic techniques. The fluorescence of the Y-base of tRNAPhe and the intrinsic fluorescence of the synthetases have been used as optical indicators. 1. Specific complexes between phenylalanyl-tRNA synthetase and tRNAPhe from yeast are formed in a two-step mechanism: a nearly diffusion-controlled recombination is followed by a fast conformational transition. Binding constants, rate constants and changes in the quantum yield of the Y-base fluorescence upon binding are given under a variety of conditions with respect to pH, added salt, concentration of Mg2+ ions and temperature. 2. Heterologous complexes between phenylalanyl-tRNA synthetase (E. coli) and tRNAPhe (yeast) are formed in a similar two-step mechanism as the specific complexes; the conformational transition, however, is slower by a factor 4-5. 3. Formation of non-specific complexes between phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) proceeds in a one-step mechanism. Phenylalanyl-tRNA synthetase (yeast) binds either two molecules of tRNAPhe (yeast) or only one molecule of tRNATyr (E. coli); tRNA1Val (E. coli) or tRNASer (yeast) are also bound in a 1:1 stoichiometry. Binding constants for complexes of phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) are determined under a variety of conditions. In contrast to specific complex formation, non-specific binding is disfavoured by the presence of Mg2+ ions, and is not affected by pH and the presence of pyrophosphate. The difference in the stabilities of specific and non-specific complexes can be varied by a factor of 2--100 depending on the ionic conditions. Discrimination of cognate and non-cognate tRNA by phenylalanyl-tRNA synthetase (yeast) is discussed in terms of the binding mechanism, the topology of the binding sites, the nature of interacting forces and the relation between specificity and ionic conditions.  相似文献   

9.
The 2.2 A crystal structure of a ternary complex formed by yeast arginyl-tRNA synthetase and its cognate tRNA(Arg) in the presence of the L-arginine substrate highlights new atomic features used for specific substrate recognition. This first example of an active complex formed by a class Ia aminoacyl-tRNA synthetase and its natural cognate tRNA illustrates additional strategies used for specific tRNA selection. The enzyme specifically recognizes the D-loop and the anticodon of the tRNA, and the mutually induced fit produces a conformation of the anticodon loop never seen before. Moreover, the anticodon binding triggers conformational changes in the catalytic center of the protein. The comparison with the 2.9 A structure of a binary complex formed by yeast arginyl-tRNA synthetase and tRNA(Arg) reveals that L-arginine binding controls the correct positioning of the CCA end of the tRNA(Arg). Important structural changes induced by substrate binding are observed in the enzyme. Several key residues of the active site play multiple roles in the catalytic pathway and thus highlight the structural dynamics of the aminoacylation reaction.  相似文献   

10.
11.
The preparation of four fluorescent derivatives of tRNAPhe (yeast) and their characterization by chemical, spectroscopic, and biochemical methods is described. The derivatives are prepared by replacing wybutine (position 37 in the anticodon loop) or NaBH4-reduced dihydrouracil (positions 16/17 in the hU loop) with ethidium or proflavine; they are isolated by reversed-phase chromatography (RPC-5). All tRNAPhe-dye derivatives are aminoacylated by yeast phenylalanyl-tRNA synthetase to at least 80% of the charging capacity of the unmodified tRNAPhe with an unchanged Km (0.2 mucroM) and a V lowered by 30--50%. They exhibit good to excellent activity in the aminoacylation assay from synthetase from Escherichia coli. It is concluded that the insertion of the dyes does not seriously disturb essential elements of the native tRNAPhe structure. The dyes are bound via N-ribosylic linkages. The appearance of isomeric tRNAPhe-ethidium derivatives is attributed to the involvement of the different amino groups of ethidium in the condensation. In addition, there are indications for the existence of alpha and beta anomers of the tRNA-dye compounds. The dyes are rigidly fixed to their position in the tRNA molecule by stacking interactions with the neighboring bases. The ethidium probes show Mg2+-induced changes of the tRNA conformation which are paralleled by changes of the rate of aminoacylation. On the basis of this observation it is hypothesized that conformational flexibility of the tRNA molecule is a functionally important feature of the tRNA structure.  相似文献   

12.
By enzymatic cleavage and ligation of tRNAVa1, its anticodon sequence IAC was altered to IAU, the anticodon of tRNAI1e. Valine acceptor activity of this variant tRNAVa1 (IAU) was reduced to the extent much lower than tyrosine acceptability of the previously prepared tRNATyr (GAA) (anticodon for tRNAPhe). Isoleucine acceptor activity was undetected, contrary to tRNATyr (GAA) which accepted phenylalanine weakly. Cleavage of tRNAVa1 (IAC) between IACA37 and C38 of its anticodon loop reduced the valine acceptor activity, suggesting some contribution of the conformation of the anticodon loop to the aminoacylation reaction.  相似文献   

13.
Chemical modification of lysine residues of eukaryotic tyrosyl-tRNA synthetase was studied. It was shown that only four out of 22 lysine residues per enzyme dimer could be modified with pyridoxal-5'-phosphate. This modification led to the inactivation of tRNATyr aminoacylation by more than 90% but did not practically affect the rate of ATP-[32P]pyrophosphate exchange. Low molecular weight substrates (ATP, ATP-tyrosine) weakly protected the enzyme from inactivation, whereas tRNATyr afforded a much more effective protection. It was supposed that lysine residues of tyrosyl-tRNA synthetase can be involved in the interaction with tRNATyr.  相似文献   

14.
15.
Specific inhibition of mammalian lysyl-tRNA synthetase by polyU is shown. Inhibition of the enzyme is dependent on the length of the oligonucleotide, since oligoU molecules with a length of less than 8 residues do not inhibit the aminoacylation, whilst the effect of oligoU molecules with a length of about 30 residues is the same as that of polyU. Inhibition is a result of recognition by the enzyme of the tRNALys anticodon sequence (UUU) coded by polyU. Aminoacylation of the oligoU molecule with attached CCA sequence (G(U)20-CCA) by yeast and mammalian lysyl-tRNA synthetases is demonstrated.  相似文献   

16.
The influence of phenylalanyl-tRNA synthetase and seryl-tRNA synthetase on the conformation and structural kinetics of yeast tRNA Phe was investigated. Ethidium substituted for dihydrouracil at position 16 or 17 was used as a structural probe, showing the existence of three conformational states in tRNA. The distribution of states (T1, T2, T3) is changed only by the cognate synthetase towards T3 which probably is related to the X-ray structure. The binding of phenylalanyl-tRNA synthetase leads to an about 10-fold increase in the fast transition T1 in equilibrium or formed from T2 which has been assigned to changes in the anticodon loop conformation and to a 2-3 fold increase in the slow transition which probably extends to other parts of the tRNA molecule. The observed rates for the transition T2 in equilibrium or formed from T3 are close to that observed for the transfer of the activated phenylalanine to tRNA Phe. This raises the possibility that the conformational transition in tRNA is the rate limiting step in the charging reaction.  相似文献   

17.
18.
Purified Escherichia coli tRNAAla and tRNALys were each converted to modified species terminating in 2'- and 3'-deoxyadenosine. The modified species were tested as substrates for activation by their cognate aminoacyl-tRNA synthetases and for misacylation with phenylalanine by yeast phenylalanyl-tRNA synthetase. E. coli alanyl- and lysyl-tRNA synthetases normally aminoacylate their cognate tRNA's exclusively on the 3'-OH group, while yeast phenylalanyl-tRNA synthetase utilizes only the 2' position on its own tRNA. Therefore, the finding that the phenylalanyl-tRNA synthetase activated only those modified tRNAAla and tRNALys species terminating in 3'-deoxyadenosine indicated that the position of aminoacylation in this case was specified entirely by the enzyme, an observation relevant to the more general problem of the reason(s) for using a particular site for aminoacylation and maintaining positional specificity during evolution. Initial velocity studies were carried out using E. coli tRNAAla and both alanyl- and phenylalanyl-tRNA synthetases. As noted in other cases, activation of the modified and unmodified tRNA's had essentially the same associated Km values, but in each case the Vmax determined for the modified tRNA was smaller.  相似文献   

19.
20.
Recognition of E coli tRNAArg by arginyl tRNA synthetase.   总被引:1,自引:1,他引:0       下载免费PDF全文
Escherichia coli tRNAArg was digested with ribonuclease T1 under restrictive conditions in order to dissect a minimum number of diester bonds. The number of diester bonds cleaved and their locations were determined by phosphorylation of the newly formed 5' hydroxyl groups with [32P] ATP and polynucleotide kinase. There was complete loss of aminoacylation of tRNAARg when two diester bonds were cleaved at the anticodon. However, this material retained the specific properties of synthetase recognition. Two fragments were derived by further digestion of this tRNA. One 19 nucleotide-long fragment derived from the 3' end of tRNAArg and another 18 nucleotide-long fragment derived from the 5' end of the molecule were required to maintain the properties of the specific recognition by the arginyl tRNA synthetase in the absence of the rest of the structure including the anticodon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号