首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of disulfiram, [1-14C]disulfiram and some other thiol reagents on the activity of cytoplasmic aldehyde dehydrogenase from sheep liver was studied. The results are consistent with a rapid covalent interaction between disulfiram and the enzyme, and inconsistent with the notion that disulfiram is a reversible competitive inhibitor of cytoplasmic aldehyde dehydrogenase. There is a non-linear relationship between loss of about 90% of the enzyme activity and amount of disulfiram added; possible reasons for this are discussed. The remaining approx. 10% of activity is relatively insensitive to disulfiram. It is found that modification of only a small number of groups (one to two) per tetrameric enzyme molecule is responsible for the observed loss of activity. The dehydrogenase activity of the enzyme is affected more severely by disulfiram than is the esterase activity. Negatively charged thiol reagents have little or no effect on cytoplasmic aldehyde dehydrogenase. 2,2'-Dithiodipyridine is an activator of the enzyme.  相似文献   

2.
Effect of disulfiram on 5-hydroxytryptamine (5-HT) turnover was studied. Treatment with disulfiram caused increases in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in rat brain. Under the same condition, activity of brain mitochondrial aldehyde dehydrogenase was reduced, however, supernatant aldehyde dehydrogenase and monoamine oxidase activities remained unchanged. Disulfiram had no effect on synthesis rate of 5-HT, but decreased metabolism of 5-HT. Moreover, disulfiram impaired transport of 5-HIAA from brain tissue.  相似文献   

3.
Stoicheiometric amounts of [14C]disulfiram react rapidly with sheep liver cytoplasmic aldehyde dehydrogenase to give loss of catalytic activity and incorporation of the expected amount of radioactivity. In a subsequent slower reaction the label is lost from the enzyme without re-emergence of enzymic activity. The results imply that in vivo disulfiram may act as an oxidation-reduction catalyst for the inactivation of aldehyde dehydrogenase.  相似文献   

4.
We have recently purified 11-hydroxythromboxane B2 dehydrogenase from porcine kidney and identified it as cytosolic aldehyde dehydrogenase (EC 1.2.1.3) based on amino acid analysis and other protein characteristics. In the present paper we have studied the catalytic interaction of thromboxane B2 (TXB2) with different aldehyde substrates and a potent aldehyde dehydrogenase inhibitor, disulfiram. TXB2 was a competitive inhibitor of the aldehyde dehydrogenase reaction in assays with 3,4-dihydroxyphenylacetaldehyde, a high affinity substrate. The conversion of TXB2 to 11-dehydro-TXB2 was also inhibited by propanal and disulfiram.

The protein characteristics of the enzyme have also been further studied. The native enzyme is a tetramer and has an isoelectric point of 7.0 which is comparable with that of cytosolic aldehyde dehydrogenases from other species. Taken together the present data further indicate that 11-hydroxythromboxane B2 dehydrogenase is identical with cytosolic aldehyde dehydrogenase and that substrates and inhibitors of aldehyde dehydrogenase interact with thromboxane metabolism in vitro.  相似文献   


5.
Stopped-flow spectrophotometric experiments show that modification by disulfiram not only lowers the steady-state rates but also decreases the size of bursts seen in both dehydrogenase and esterase reactions catalysed by sheep liver cytoplasmic aldehyde dehydrogenase. This observation is consistent with the proposal that a catalytically essential group is modified by disulfiram and that this group mediates both dehydrogenase and esterase activities.  相似文献   

6.
BACKGROUND/AIMS: The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared liver slices has not been previously reported. The present investigation compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activities in the oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared liver slices. METHODS: Vanillin, isovanillin or protocatechuic aldehyde was incubated with liver slices in the presence/absence of specific inhibitors of each enzyme, followed by HPLC. RESULTS: Vanillin was rapidly converted to vanillic acid. Vanillic acid formation was completely inhibited by isovanillin (aldehyde oxidase inhibitor), whereas disulfiram (aldehyde dehydrogenase inhibitor) inhibited acid formation by 16% and allopurinol (xanthine oxidase inhibitor) had no effect. Isovanillin was rapidly converted to isovanillic acid. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. Protocatechuic aldehyde was converted to protocatechuic acid at a lower rate than that of vanillin or isovanillin. Allopurinol only slightly inhibited protocatechuic aldehyde oxidation, isovanillin had little effect, whereas disulfiram inhibited protocatechuic acid formation by 50%. CONCLUSIONS: In freshly prepared liver slices, vanillin is rapidly oxidized by aldehyde oxidase with little contribution from xanthine oxidase or aldehyde dehydrogenase. Isovanillin is not a substrate for aldehyde oxidase and therefore it is metabolized to isovanillic acid predominantly by aldehyde dehydrogenase. All three enzymes contribute to the oxidation of protocatechuic aldehyde to its acid.  相似文献   

7.
Human erythrocyte aldehyde dehydrogenase (aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) was purified to apparent homogeneity. The native enzyme has a molecular weight of about 210,000 as determined by gel filtration, and SDS-polyacrylamide gel electrophoresis of this enzyme yields a single protein and with a molecular weight of 51,500, suggesting that the native enzyme may be a tetramer. The enzyme has a relatively low Km for NAD (15 microM) and a high sensitivity to disulfiram. Disulfiram inhibits the enzyme activity rapidly and this inhibition is apparently of a non-competitive nature. In kinetic characteristic and sensitivity to disulfiram, erythrocyte aldehyde dehydrogenase closely resembles the cytosolic aldehyde dehydrogenase found in the liver of various species of mammalians.  相似文献   

8.
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring duringhepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 110 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusions, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

9.
High concentrations of aldehydes slow the inactivation of cytoplasmic aldehyde dehydrogenase by disulfiram and also slow the reaction of the enzyme with 2,2'-dithiodipyridine. It is concluded that a low-affinity aldehyde-binding site is probably the site at which thiol-group modifiers react with aldehyde dehydrogenase, as well as being the active site for hydrolysis of 4-nitrophenyl acetate.  相似文献   

10.
Characterization of aldehyde dehydrogenase from HTC rat hepatoma cells   总被引:1,自引:0,他引:1  
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring during hepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 100 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusion, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

11.
1. Pre-modification of cytoplasmic aldehyde dehydrogenase by disulfiram results in the same extent of inactivation when the enzyme is subsequently assayed as a dehydrogenase or as an esterase. 2. 4-Nitrophenyl acetate protects the enzyme against inactivation by disulfiram, particularly well in the absence of NAD+. Some protection is also provided by chloral hydrate and indol-3-ylacetaldehyde (in the absence of NAD+). 3. When disulfiram is prevented from reacting at its usual site by the presence of 4-nitrophenyl acetate, it reacts elsewhere on the enzyme molecule without causing inactivation. 4. Enzyme in the presence of aldehyde and NAD+ is not at all protected against disulfiram. It is proposed that, under these circumstances, disulfiram reacts with the enzyme-NADH complex formed in the enzyme-catalysed reaction. 5. Modification by disulfiram results in a decrease in the amplitude of the burst of NADH formation during the dehydrogenase reaction, as well as a decrease in the steady-state rate. 6. 2,2'-Dithiodipyridine reacts with the enzyme both in the absence and presence of NAD+. Under the former circumstances the activity of the enzyme is little affected, but when the reaction is conducted in the presence of NAD+ the enzyme is activated by approximately 2-fold and is then relatively insensitive to the inactivatory effect of disulfiram. 7. Enzyme activated by 2,2'-dithiodipyridine loses most of its activity when stored over a period of a few days at 4 degrees C, or within 30 min when treated with sodium diethyldithiocarbamate. 8. Points for and against the proposal that the disulfiram-sensitive groups are catalytically essential are discussed.  相似文献   

12.
1. The effect of disulfiram on the activity of the cytoplasmic and mitochondrial aldehyde dehydrogenases of sheep liver was studied. 2. Disulfiram causes an immediate inhibition of the enzyme reaction. The effect on the cytoplasmic enzyme is much greater than on the mitochondrial enzyme. 3. In both cases, the initial partial inhibition is followed by a gradual irreversible loss of activity. 4. The pH-rate profile of the inactivation of the mitochondrial enzyme by disulfiram and the pH-dependence of the maximum velocity of the enzyme-catalysed reaction are both consistent with the involvement of a thiol group. 5. Excess of 2-mercaptoethanol or GSH abolishes the effect of disulfiram. However, equimolar amounts of either of these reagents and disulfiram cause an effect greater than does disulfiram alone. It was shown that the mixed disulphide, Et2N-CS-SS-CH2-CH2OH, strongly inhibits aldehyde dehydrogenase. 6. The inhibitory effect of diethyldithiocarbamate in vitro is due mainly to contamination by disulfiram.  相似文献   

13.
Characterization of rat cornea aldehyde dehydrogenase   总被引:1,自引:0,他引:1  
Aldehyde dehydrogenase has been purified from rat cornea in a single step. The enzyme is a class 3 aldehyde dehydrogenase. Cornea aldehyde dehydrogenase is a 100-kDa dimer composed of 51-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes as well as medium chain length (4-9 carbons) aliphatic aldehydes. The substrate and coenzyme specificity, immunochemical properties, effect of disulfiram, pH profile, and isoelectric point of cornea aldehyde dehydrogenase are identical to those of tumor-associated aldehyde dehydrogenase, the prototype class 3 enzyme. The substrate and coenzyme preferences are consistent with a role for cornea aldehyde dehydrogenase in the oxidation of a variety of aldehydes generated by lipid metabolism, including lipid peroxidation.  相似文献   

14.
Small concentrations of 2,2'-dithiodipyridine cause a rapid activation of sheep liver cytoplasmic aldehyde dehydrogenase in the presence of NAD+. Enzyme pre-modified by 2,2'-dithiodipyridine is largely protected against the potent inactivatory effect of disulfiram. 2,2'-Dithiobis-(5-nitropyridine) inactivates the enzyme. The implications of these results are discussed with reference to various possible classes of thiol group in aldehyde dehydrogenase.  相似文献   

15.
The cytosolic aldehyde dehydrogenase was isolated from the liver of Wistar rats treated with phenanthrene (non-carcinogenic) or benzo[a]pyrene (carcinogenic polycyclic aromatic hydrocarbon). The benzo[a]pyrene-induced enzyme has higher Km values for small aliphatic aldehydes and a lower molecular weight than the phenanthrene-induced enzyme. It is more resistant to changes of pH and to inhibition by disulfiram, but more sensitive to heat denaturation than the phenanthrene-induced enzyme. The phenanthrene-induced aldehyde dehydrogenase is very similar to the normal uninduced aldehyde dehydrogenase, whereas the benzo[a]pyrene-induced aldehyde dehydrogenase has common properties with the TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced enzyme and the hepatoma-specific enzyme.  相似文献   

16.
The subcellular distribution of aldehyde dehydrogenase activity was determined in human liver biopsies by analytical sucrose density-gradient centrifugation. There was bimodal distribution of activity corresponding to mitochondrial and cytosolic localizations. At pH 9.6 cytosolic aldehyde dehydrogenase had a lower apparent Kappm for NAD (0.03 mmol l-1), than the mitochondrial enzyme (Kappm NAD = 1.1 mmol l-1). Also, the pH optimum for cytosolic aldehyde dehydrogenase activity (pH 7.5) was lower than that for the mitochondrial enzyme activity (pH 9.0), and the cytosolic enzyme activity was more sensitive to inhibition by disulfiram in vitro. Disulfiram (40 mumol l-1) caused a 70% reduction in cytosolic aldehyde dehydrogenase activity, but only a 30% reduction in mitochondrial enzyme activity after 10 min incubation. The liver cytosol may therefore be the major site of acetaldehyde oxidation in vivo in man.  相似文献   

17.
Various physiological roles of mammalian aldehyde dehydrogenase had been anticipated because of its broad substrate specificity. In order to clarify roles of the enzyme and the regulation of aldehyde metabolisms in liver, the intracellular distribution and isozyme of beef liver aldehyde dehydrogenase were studied.

The presence of the mitochondrial, the microsomal and the cytoplasmic isozymes were proved by the isoelectric focusing. These isozymes were different from each other in pH-activity curve in the responces for steroid hormones and disulfiram.

It was suggested by comparing the reactivities of these isozymes for various aldehydes that particular aldehyde might be oxidized by a favorite isozyme at particular locality in the liver cells and that a share of physiological role among these isozymes is probable.  相似文献   

18.
The subcellular distribution and properties of four aldehyde dehydrogenase isoenzymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenases (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomal fraction (27%) possess the majority of the aldehyde dehydrogenase, with cytosol possessing little, if any, activity. Isoenzymes I-III can be identified in both fractions and differ from each other on the basis of substrate and coenzyme specificity, substrate K(m), inhibition by disulfiram and anti-(hepatoma aldehyde dehydrogenase) sera, and/or isoelectric point. Hepatomas possess considerable cytosolic aldehyde dehydrogenase (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isoenzymes I-III are present in tumour mitochondrial and microsomal fractions, little isoenzyme I or II is found in cytosol. Of hepatoma cytosolic aldehyde dehydrogenase activity, 50% is a hepatoma-specific isoenzyme (IV), differing in several properties from isoenzymes I-III; the remainder of the tumour cytosolic activity is due to isoenzyme III (48%). The data indicate that the tumour-specific aldehyde dehydrogenase phenotype is explainable by qualitative and quantitative changes involving primarily cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only after exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and a change in subcellular location of a basal normal-liver aldehyde dehydrogenase isoenzyme.  相似文献   

19.
1. Sheep liver cytoplasmic aldehyde dehydrogenase can be purified from contamination with the mitochondrial form of the enzyme by pH-gradient ion-exchange chromatography. The method is simple, reproducible and efficient. 2. The purified cytoplasmic enzyme retains about 2% of its original activity in the presence of a large excess of disulfiram. This suggests that the disulfiram-reactive thiol groups are not essential for covalent interaction with the aldehyde substrate during catalysis, as has sometimes been suggested. 3. Between 1.5 and 2.0 molecules of disulfiram per tetrameric enzyme molecule account for the observed loss of activity, suggesting that the enzyme may have only two functional active sites. 4. Experiments show that disulfiram-modified enzyme retains the ability to bind NAD+ and NADH.  相似文献   

20.
Inhibition of human erythrocyte aldehyde dehydrogenase (ALDH) activity was studied using disulfiram and its reduced metabolite, diethyldithiocarbamate (DDC). The enzyme was rapidly inactivated by disulfiram and the inhibition was protected by reduced glutathione (GSH), in a concentration dependent manner when the enzyme premixed with GSH was reacted with disulfiram. Higher reactivity of the thiol group of the enzyme than that of GSH to disulfiram was suggested from the observation that half of the enzyme activity was inhibited when the ratio of disulfiram to GSH was 1:10. Although DDC alone showed no inhibitory effect on the enzyme, inactivation was mediated by a low concentration of heme-containing peroxidases, but not by methemoglobin. Under this condition, the inhibition potential was not protected, even with a high concentration of GSH. The constant reoxidation system of DDC is probably directly related to the enzyme inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号