首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
After characterization of a novel odorant-binding protein (OBP) variant isolated from the rat nasal mucus, the corresponding cDNA was cloned by RT-PCR. Recombinant OBP-1F, the sequence of which is close to that of previously reported rat OBP-1, has been secreted by the yeast Pichia pastoris at a concentration of 80 mg.L-1 in a form identical to the natural protein as shown by MS, N-terminal sequencing and CD. We observed that, in contrast with porcine OBP-1, purified recombinant OBP-1F is a homodimer exhibiting two disulfide bonds (C44-C48 and C63-C155), a pairing close to that of hamster aphrodisin. OBP-1F interacts with fluorescent probe 1-aminoanthracene (1-AMA) with a dissociation constant of 0.6 +/- 0. 3 microM. Fluorescence experiments revealed that 1-AMA was displaced efficiently by molecules including usual solvents such as EtOH and dimethylsulfoxide. Owing to the large OBP-1F amounts expressed, we set up a novel biomimetic assay (volatile-odorant binding assay) to study the uptake of airborne odorants without radiolabelling and attempted to understand the odorant capture by OBP in the nasal mucus under natural conditions. The assay permitted observations on the binding of airborne odorants of different chemical structures and odors (2-isobutyl-3-methoxypyrazine, linalool, isoamyl acetate, 1-octanal, 1-octanol, dimethyl disulfide and methyl thiobutyrate). Uptake of airborne odorants in nearly physiological conditions strengthens the role of OBP as volatile hydrophobic odorant carriers in the mucus of the olfactory epithelium through the aqueous barrier towards the chemo-sensory cells.  相似文献   

2.
Insect olfactory perception involves many aspects of insect life, and can directly or indirectly evoke either individual or group behaviors. Insect olfactory receptors and odorant-binding proteins (OBPs) are considered to be crucial to insect-specific and -sensitive olfaction. Although the mechanisms of interaction between OBPs or OBP/ligand complex with olfactory receptors are still not well understood, it has been shown that many OBPs contribute to insect olfactory perception at various levels. Some of these are numerous and divergent members in OBP family; expression in the olfactory organ at high concentration; a variety of combinational patterns between different OBPs and ligands, but exclusive affinity for one OBP to specific binding ligands; complicated interactions between OBP/ligand complex and transmembrane proteins (olfactory receptors or sensory neuron membrane proteins). First, we review OBPs' ligand-binding property based on OBP structural research and ligand-binding test; then, we review current progress around the points cited above to show the role of such proteins in insect olfactory signal transmission; finally, we discuss applications based on insect OBP research.  相似文献   

3.
This study targets to express the piglet odorant-binding protein (plOBP) and compare the engineered product to the corresponding native protein forms, i.e. plOBP and adult porcine OBP (pOBP). Using the natural signal peptide from the cDNA sequence, up to 40 mg l(-1) of secreted recombinant piglet OBP (rOBP) has been produced in a minimal culture medium. No significant difference in molecular mass between rOBP and native plOBP could be observed by mass spectrometry following or not trypsin digestion. rOBP and pOBP shared similar immunoreactivity towards polyclonal anti-pOBP antibodies, suggesting a proper processing and folding of the recombinant product. Both plOBP and rOBP displayed comparable binding properties towards fatty acids present in the putative maternal pheromone and a steroid, component of the boar sex pheromone. Furthermore, the rOBP product was found to bind to an olfactory receptor, for which pOBP binding was previously characterized. Taken together, these findings suggest that rOBP, produced in Pichia pastoris, exhibits structural and functional properties comparable to those of the native lipocalins from both young or adult animal.  相似文献   

4.
The distribution of odorant-binding proteins among olfactory sensilla of three moth species was studied by immuno-electron microscopy. Two polyclonal antisera were used in a post-embedding labelling protocol on sections of cryo-substituted antennae. The first was directed against the pheromone-binding protein (PBP) of Antheraea polyphemus, the second against the general odorant-binding protein (GOBP) of the same species. Immunoblots showed that these antisera were highly specific; both antisera did, however, cross-react with related proteins in the related species A. pernyi, and in the bombycid moth B. mori. PBP and GOBP were localized only in olfactory sensilla trichodea and sensilla basiconica, the principal site being the sensillum lymph surrounding the sensory dendrites. In the males of all three species, the pheromone-sensitive long sensilla trichodea exclusively contained PBP. the majority of the sensilla basiconica in both sexes in these species contained GOBP; these sensilla are known to respond to plant and other general odours. Some sensilla were not labelled by either antiserum; presumably, these held an odorantbinding protein of a different subfamily. Never were PBP and GOBP co-localized in the same sensillum. Two observations deserve special attention: (1) PBP was also found in a few sensilla in females, and (2) in B. mori, where the long sensilla trichodea have a different functional specificity in males (pheromone) and females (plant odours), the expression of the odorant-binding protein (males: PBP; females: GOBP) is similarly different. The distinct and complex distribution pattern of odorant-binding proteins supports the notion that these proteins participate in stimulus recognition.Dedicated to Professor Ya.A. Vinnikov on the occasion of his 85. birthdayThis work was partly supported by DFG grant ste 501/3-1.  相似文献   

5.
In this report we show the purification to homogeneity and a partial characterization of a new odorant-binding protein from Canis familiar (CfOBP) nasal mucosa. In addition, we report preliminary data on the utilization of CfOBP as a probe for the development of a refractive index-based biosensor.  相似文献   

6.
Lu K  Wang W  Xie Z  Wong BS  Li R  Petersen RB  Sy MS  Chen SG 《Biochemistry》2000,39(44):13575-13583
The doppel protein (Dpl) is a newly recognized prion protein (PrP)-like molecule encoded by a novel gene locus, prnd, located on the same chromosome as the PrP gene. To study the structural features of Dpl, we have expressed recombinant human Dpl corresponding to the putative mature protein domain (residues 24-152) in Escherichia coli. The primary structure of the recombinant Dpl 24-152 was characterized using gel electrophoresis, N-terminal Edman sequencing, matrix-assisted laser desorption ionization mass spectrometry, and electrospray ionization mass spectrometry. Dpl 24-152 was shown to contain two disulfide bonds (Cys94-Cys145 and Cys108-Cys140). The secondary structure of Dpl was analyzed using far-UV circular dichroism spectroscopy. Dpl 24-152 was found to be an alpha-helical protein having a high helical content (40%). Dpl 24-152 exhibited characteristics of a thermodynamically stable protein that undergoes reversible and cooperative thermal denaturation. In addition, Dpl was found to be soluble and sensitive to proteinase K digestion. Therefore, Dpl 24-152 possesses biochemical properties similar to those of recombinant PrP. This study provides knowledge about the molecular features of human Dpl that will be useful in further investigation into its normal function and the role it may play in neurodegenerative diseases.  相似文献   

7.
8.
To prevent spreading of deadly diseases, populations of mosquitoes can be controlled by interfering with their chemical communication system. Odorant-binding proteins, recently shown to be required for olfaction, represent interesting targets for such purpose. Here we describe the ligand-binding properties and the unusual tissue expression of odorant-binding protein 22 from the repertoire of Aedes aegypti. Best ligands are molecules with two aromatic rings connected by a short rigid chain. The protein is expressed not only in sensory organs, such as the antennae and proboscis, but also in the male reproductive apparatus and transferred to the spermathecs of females. This suggests an additional function for this protein as pheromone carrier, analogously to vertebrates’ urinary and salivary proteins as well as some insect chemosensory proteins. Antiserum against odorant-binding protein 22 also stained the edges and sensilla of spiracles, indicating a third, still unknown, role for this protein.  相似文献   

9.
10.
Wang P  Lyman RF  Shabalina SA  Mackay TF  Anholt RR 《Genetics》2007,177(3):1655-1665
Adaptive evolution of animals depends on behaviors that are essential for their survival and reproduction. The olfactory system of Drosophila melanogaster has emerged as one of the best characterized olfactory systems, which in addition to a family of odorant receptors, contains an approximately equal number of odorant-binding proteins (OBPs), encoded by a multigene family of 51 genes. Despite their abundant expression, little is known about their role in chemosensation, largely due to the lack of available mutations in these genes. We capitalized on naturally occurring mutations (polymorphisms) to gain insights into their functions. We analyzed the sequences of 13 Obp genes in two chromosomal clusters in a population of wild-derived inbred lines, and asked whether polymorphisms in these genes are associated with variation in olfactory responsiveness. Four polymorphisms in 3 Obp genes exceeded the statistical permutation threshold for association with responsiveness to benzaldehyde, suggesting redundancy and/or combinatorial recognition by these OBPs of this odorant. Model predictions of alternative pre-mRNA secondary structures associated with polymorphic sites suggest that alterations in Obp mRNA structure could contribute to phenotypic variation in olfactory behavior.  相似文献   

11.
Gene duplications, deletions, and point mutations in peripheral myelin protein 22 (PMP22) are linked to several inherited peripheral neuropathies. However, the structural and biochemical properties of this very hydrophobic putative tetraspan integral membrane protein have received little attention, in part because of difficulties in obtaining milligram quantities of wild type and disease-linked mutant forms of the protein. In this study a fusion protein was constructed consisting of a fragment of lambda repressor, a decahistidine tag, an intervening TEV protease cleavage site, a Strep tag, and the human PMP22 sequence. This fusion protein was expressed in Escherichia coli at a level of 10-20 mg/L of protein. Following TEV cleavage of the fusion partner, PMP22 was purified and its structural properties were examined in several different types of detergent micelles using cross-linking, near and far-UV circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy. PMP22 is highly helical and, in certain detergents, shows evidence of stable tertiary structure. The protein exhibits a strong tendency to dimerize. The 1H-15N TROSY NMR spectrum is well dispersed and contains signals from all regions of the protein. It appears that detergent-solubilized PMP22 is amenable to detailed structural characterization via crystallography or NMR. This work sets the stage for more detailed studies of the structure, folding, and misfolding of wild type and disease-linked mutants in order to unravel the molecular defects underlying peripheral neuropathies.  相似文献   

12.
13.
The human tumor suppressor p53 is a conformationally flexible and functionally complex protein that is only partially understood on a structural level. We expressed full-length p53 in the cytosol of Escherichia coli as inclusion bodies. To obtain active, recombinant p53, we varied renaturation conditions using DNA binding activity and oligomeric state as criteria for successful refolding. The optimized renaturation protocol allows the refolding of active, DNA binding p53 with correct quaternary structure and domain contact interfaces. The purified protein could be allosterically activated for DNA binding by addition of a C-terminally binding antibody. Analytical gelfiltration and chemical cross-linking confirmed the tetrameric quaternary structure and the spectroscopic analysis of renatured p53 by fluorescence and circular dichroism, suggested that native p53 is partially unstructured.  相似文献   

14.
15.
Odorant-binding proteins (OBPs) primarily function in the transport of hydrophobic odorants. In this study, OBPs originating from rat and pig were cloned into a mammalian expression vector, pcDNA3, and expressed in HEK-293 cells, and their specificity for odorants and olfactory receptors was examined. Results suggest that OBPs have a high affinity for the olfactory receptors when both the OBP and receptor originate from the same species. The rat OBPs were bound not only to the rat olfactory receptor I7 but also to the odorant specific to I7. The solubility of the odorant was increased by both OBP2 and OBP3, which originate from rat, but with different efficiencies. These results demonstrate that OBPs specifically interact with odorants as well as olfactory receptors, and these interactions can influence the sensitivity of olfactory receptor-based biosensors.  相似文献   

16.
Cow nasal tissue contains a protein which shows specific binding activity for 'green' smelling compounds such as 2-isobutyl-3-methoxypyrazine. This protein has now been purified using anion-exchange fast protein liquid chromatography. The protein has a relative molecular mass of 40 0000-44 000, s = 3.1 +/- 0.3 S, pI = 4.7 +/- 0.1 with an absorbance maximum at 278 nm, and consists of two subunits with an identical relative molecular mass of 19 000. It is localised in the soluble fraction of cells from the olfactory mucosa and respiratory mucosa from the middle part of the maxillary and nasal turbinates, and is absent from all other tissues tested.  相似文献   

17.
18.
The expression pattern of galectin-1 and galectin-3 in the human olfactory epithelium was investigated in relation to olfactory marker protein (OMP) using confocal laser immunofluorescence in human specimens and postmortem biopsies. OMP expression was found in olfactory receptor neurons (ORNs) in the olfactory mucosa and in fibers of the olfactory nerve crossing the submucous connective tissue. Galectin-1 was expressed in both the connective tissue of the nasal cavity and in the basal layer of the olfactory epithelium. In contrast, galectin-3 expression was limited to cells of the upper one-third of the olfactory epithelium. Expression of galectin-3 occurred in a subset of OMP-positive cells. However, between areas of galectin-1 and galectin-3 expression in the lower and upper portion of the epithelium, OMP-positive ORNs did not stain for both galectins. Considering the potential role of galectin-1 and galectin-3 in cell differentiation and maturation, the differential localization of galectins in the olfactory epithelium appears to be consistent with a significant role of these molecules in the physiological turnover of ORNs. Accepted: 20 December 1999  相似文献   

19.
Successful approaches to protein engineering required that the desired analogs be easily and rapidly obtained in sufficient quantities and purities for unambiguous structural and functional characterizations. Chemical synthesis is the method of choice for engineering small peptides. We now demonstrate that with improved methodologies and instrumentation, total chemical synthesis can be used to produce a small protein in a form suitable for engineering studies. Active human transforming growth factor-alpha (TGF-alpha), a 50 amino acid long protein with three disulfide bonds, has been synthesized and purified in multiple tens of mg amounts in less than 7 days. The purified human TGF-alpha migrated as a single band on SDS-polyacrylamide gels, ran as a single sharp major band at pI = 6.2 on isoelectric focusing gels, displayed an MW = 5546.2 (Th.5546.3) by mass spectrometry, contained three disulfide bonds and had EGF receptor binding, mitogenic and soft agar colony formation activities. The locations of disulfide bonds were found to be analogous to those found in epidermal growth factor (EGF) and in human TGF-alpha expressed in bacteria.  相似文献   

20.
Infrared spectra show that the binding of the odorants 2-isobuthyl-3-methoxypyrazine (PYR) and 3,7-dimethyl-1-octanol (DMO) stabilises the tertiary structure of porcine OBP-I against thermal denaturation. The fluorescence emission spectrum of the single tryptophan shows a lambdamax at 337 nm, indicating that the residue is not directly exposed to the solvent. Tryptophan does not appear to be involved in the odorant binding process and it is not accessible to the fluorescence quenchers NaI, CsCl and acrylamide. The binding of the fluorescent dye 1-aminoanthracene (1-AMA), a strong ligand, does not modify the tryptophan fluorescence spectrum. In contrast, the lambdamax of 1-AMA bound to OBP-I is shifted from 537 to 481 nm, with a lambdamax intensity increase by a factor of 80. Bound 1-AMA is displaced by odorant molecules in competitive binding assays and can be employed in simple and rapid binding assay, avoiding the use of radioactive ligands. The Scatchard plot shows that 1-AMA binds to OBP-I with a dissociation constant of 1.3 microM and an equimolar stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号