首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geographic area hypothesis advances area as the primary cause of latitudinal gradients in diversity. The greater area of tropical zones, it suggests, stimulates speciation, inhibits extinction, and leads to increased species richness compared to the situation in smaller temperate and boreal zones. Because bats exhibit exceptionally strong latitudinal gradients of richness at multiple spatial scales in the New World, they are an appropriate system with which to test the geographic area hypothesis. We used range maps for 250 species of New World bats to estimate species richness in biogeographic zones at two hierarchical spatial scales: biome types and provinces. We then conducted a series of regression analyses to evaluate the ability of area to account for latitudinal gradients in species richness. However, spillover (zonal bleeding) of tropical species into extra-tropical zones may mask the species-area relationship and alter perceptions of the latitudinal gradient. To address this issue, we conducted additional analyses excluding tropical species, using a series of increasingly inclusive definitions of tropical ranges. Ecogeographic zones of the New World are not larger at tropical versus extra-tropical latitudes. Moreover, spillover of tropical species into ecogeographic zones within extra-tropical regions generally does not diminish the association between richness and area. Nonetheless, the latitudinal gradient of species richness is strong and significant at both ecogeographic scales. Clearly, area does not drive the latitudinal gradient of bat species richness in the New World. In fact, area represents a source of noise rather than a dominant signal at the focal scale of biome types and provinces in the Western Hemisphere.  相似文献   

2.
The unresolved question of what causes the observed positive relationship between large-scale productivity and species richness has long interested ecologists and evolutionists. Here we examine a potential explanation that we call the biogeographic affinity hypothesis, which proposes that the productivity-richness relationship is a function of species' climatic tolerances that in turn are shaped by the earth's climatic history combined with evolutionary niche conservatism. Using botanical data from regions and sites across California, we find support for a key prediction of this hypothesis, namely, that the productivity-species richness relationship differs strongly and predictably among groups of higher taxa on the basis of their biogeographic affinities (i.e., between families or genera primarily associated with north-temperate, semiarid, or desert zones). We also show that a consideration of biogeographic affinity can yield new insights on how productivity-richness patterns at large geographic scales filter down to affect patterns of species richness and composition within local communities.  相似文献   

3.
Aim To test six hypotheses that could explain or mediate the positive correlation between human population density (HPD) and bird species richness while controlling for biased sampling effort. These hypotheses were labelled as follows: productivity (net primary productivity, NPP); inherent heterogeneity (diversity of vegetation types); anthropogenic heterogeneity (diversity of land uses); conservation policy (proportion of conservation land); increased productivity (human‐induced productivity increases); and the reduced‐slope hypothesis (which predicts that humans have a negative impact on species numbers across the full range of variation in HPD). Location Australia. Methods All data were collected at a spatial resolution of 1° across mainland Australia. Bird species richness was from 2007 atlas data and random subsampling was used to account for biased sampling effort. HPD was from the 2006 census. All other data were from government produced geographic information system layers. The most important biotic or abiotic factors influencing patterns in both species richness and HPD were assessed using simultaneous autoregressive models and an information theoretic approach. Results NPP appeared to be one of the main factors driving spatial congruence between bird species richness and HPD. Inherent habitat heterogeneity was weakly related to richness and HPD, although an interaction between heterogeneity and NPP indicated that the former may be an important determinant of species richness in low‐productivity regions. There was little evidence that anthropogenic landscape heterogeneity or human‐induced changes in productivity influenced the relationship between species richness and HPD, but conservation policy appeared to act as an important mediating factor and species richness was positively related to the proportion of conservation land only in regions of high HPD. Main conclusions The spatial congruence between bird species richness and HPD occurs because both respond positively to productivity and, in certain circumstances, habitat heterogeneity. Our results suggest that conservation policy could mediate this relationship, but further research is required to determine the importance of conservation reserves in supporting species in regions densely populated by humans.  相似文献   

4.
General ecological expectations about the relationship between latitude and species richness are that at low latitudes (the tropics) species richness is greater than at higher latitudes (temperate and polar regions). Recent work suggests that this may not be the case for several habitat types and biological groups in Australia. Results are conflicting: on present evidence (admittedly sparse) it appears that in Australian tropical fresh waters species richness is generally depressed in zooplankton and littoral microfaunal communities, but not in macroinvertebrate communities in typical streams and in fish communities (and perhaps also in amphibian and reptile communities). The situation is indeterminate for tropical phytoplankton and macrophyte communities.  相似文献   

5.
We tested the prediction that forest habitat types with relatively high productivity are not only relatively low in species richness but are also regionally uncommon. This relationship was supported by an analysis of data from 146 forest communities in southern Ontario, Canada. Potential forest habitat productivity was determined based on a classification scheme developed for the Canadian Land Inventory (CLI) project. Vascular plant species richness approximated a unimodal distribution across forest productivity classes with the lowest mean species richness recorded for the two most productive classes. The contemporary regional commonness of forest habitat productivity classes were also displayed as a unimodal frequency distribution. Hence, mean species richness per CLI class was positively correlated with the regional area of land encompassing each of these productivity classes and this relationship was increasingly significant at increasingly larger spatial scales of regional CLI class land areas. These results are consistent with the species pool hypothesis, which postulates that species richness is relatively low in highly productive habitats because such habitats have been relatively uncommon in both space and time and hence, have had relatively little historical opportunity for the origination of adapted species.  相似文献   

6.
Synopsis Fish species richness in 82 lakes in Ontario, Canada was significantly correlated with surface area. In this region, latitude explained only a small amount of the variation in fish species richness. Thus, our study provides a clear demonstration of the relation between fish species richness and lake area without the confounding effects of latitude and physiography inherent in analyses from broader geographic regions. By comparison with the species-area relationship obtained, we show that acidification clearly depressed the number of fish species in 66 acid-stressed lakes in Ontario. Fish species richness was also significantly correlated with both drainage and surface areas of 21 Ontario rivers. Slopes of species-area regressions of lakes and rivers did not differ significantly, suggesting that species are added to these habitats at similar rates. However, our regression analyses show that rivers support more species of fish per unit surface area of water. Although these results are consistent with some predictions of island biogeography theory, we suggest that fish species richness is more likely to be a simple function of habitat diversity, rather than an equilibrial balance between immigration and extinction.  相似文献   

7.
  • The Cactaceae is one of the most conspicuous and ecologically important plant families in the world. Its species may have specialist or generalist pollination systems that show geographic patterns, which are synthesised in the Geographic Dichotomy Hypothesis.
  • Here, we assess this hypothesis in five countries in both tropical and extratropical regions, evaluating the pollinator visitation rate and pollinator identity and abundance. We calculate the Shannon diversity index (H′) and evenness (J) and evaluate differences between latitude parameters with a Student t‐test.
  • Overall, we found more specialised pollination systems in all tropical sites; the richness, diversity and evenness of pollinators was reduced in comparison to extratropical regions, where the pollination system was generalised.
  • Our results support the geographic dichotomy hypothesis in the cacti of South America, suggesting that environmental factors underlying the latitudinal patterns can help to explain differences in the pollination syndrome between tropical and extratropical regions.
  相似文献   

8.
Aim We investigated the patterns of species richness in land snails and slugs along a tropical elevational gradient and whether these patterns correlate with area, elevation, geographic constraints, and productivity. We did so both at the scale at which land snail population processes take place and at the coarser scale of elevational zones. Location Mount Kinabalu (4096 m) and the adjacent Mount Tambuyukon (2588 m) in Kinabalu Park, Sabah, Malaysian Borneo. Methods We used an effort‐controlled sampling protocol to determine land snail and slug species richness in 142 plots of 0.04 ha at elevations ranging from 570 to 4096 m. Extents of elevational ranges were determined by interpolation, extended where appropriate at the lower end with data from lowlands outside the study area. We used regression analysis to study the relationships between species density and richness on the one hand and elevation and area on the other. This was done for point data as well as for data combined into 300‐m elevational intervals. Results Species density (based on the individual samples) showed a decline with elevation. Elevational range length profiles revealed that range lengths are reduced at greater elevations and that a Rapoport effect is absent. Diversity showed a mild mid‐domain effect on Kinabalu, but not on Tambuyukon. When the data were combined into 300‐m elevational intervals, richness correlated more strongly with elevation than with area. Ecomorphospace was seen to shrink with increasing elevation. Main conclusions The elevational species richness patterns show the combined effects of (1) reduced niche diversity at elevations with lower productivity and (2) historical events in which the upward migration of lowland species as well as the speciation of highland endemics took place.  相似文献   

9.
A map of termite generic richness worldwide shows that the Ethiopian biogeographical region is most genus-rich, while the Neotropical and Indo-Malayan regions are less rich. Net primary productivity (NPP) has been postulated as a possible explanation for some diversity patterns (energy-diversity theory). We reject this as the primary explanation for termite generic richness patterns because the Ethiopian region has low NPP and a high generic richness while the Neotropical and Indo-Malayan regions have high NPP and low generic richness. We explore an alternative historical hypothesis, that differing levels of Quaternary climatic disturbance are responsible for the differences in termite generic richness between the three tropical regions.  相似文献   

10.
Aim To quantify the latitudinal gradient in species richness in the New World Triatominae and to explore the species‐energy and area hypotheses as possible causes. Location The gradient was studied for North and South America, between 43° N and 32° S. Methods A database was constructed containing the geographical distribution of the 118 New World Triatominae species based on data extracted from several published sources. Species richness was recorded as the number of species present within 5° latitudinal bands. We used univariate and multivariate models to analyse the relationship between area within each latitudinal belt, land surface temperature, and potential evapotranspiration as explanatory variables, and species richness. All variables were georeferenced and data were extracted using a GIS. Results Species richness of Triatominae increases significantly from the poles towards the Equator, peaking over the 5°?10 ° S latitudinal band. It increases according to a linear model, both north and south of the Equator, although a quadratic model fits better to southern hemisphere data. Richness correlates with habitable geographical area, when it is analysed through a nonlinear multiple regression factoring out latitude, only in the southern hemisphere. Regarding the species‐energy hypothesis, a multiple regression analysis controlling the effect of latitude shows a significant relationship between temperature and species richness. This effect is more pronounced in the southern hemisphere. Species richness shows a strong longitudinal trend south of the Equator (increasing to the east), but not north of the Equator. This differential pattern is reflected in significant interactions between longitude and both latitude and temperature in models of the species richness of the New World Triatominae. Main conclusions To our knowledge, this is the first time that a latitudinal gradient in species richness has been shown and analysed for obligate haematophagous organisms, and it shows that the species–energy hypothesis can account for this phenomenon. This relationship is stronger in the southern hemisphere.  相似文献   

11.
The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other’s closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity–richness relationship underlying global gradients in biodiversity.  相似文献   

12.

Aim

Understanding the determinants of species distribution and richness is key to explaining global ecological patterns. We examined the current knowledge about terrestrial mammals in tidal marshes and evaluated whether species richness increased with the marsh surface area and/or with their proximity to the equator and whether species distribution ranges decreased with latitude.

Location

Global.

Methods

We reviewed the existing literature on terrestrial mammals in tidal marshes. We examined their ecological characteristics (e.g. habitat specialists, native or alien), predicted their variation in species richness and range size along latitude, and explored factors, such as surface area, underlying the global patterns found.

Results

We found 962 records, describing 125 mammalian species using tidal marshes worldwide, also including several alien species. Most species (95%) were not marsh specialized, and some (18%) were of conservation concern. There were information gaps in South America, Africa, Australia and Asia, and a lack of information about mammalian ecological roles worldwide. We found that species richness increased with surface area, and showed a bimodal pattern peaked between 40° and 50° latitude in each hemisphere. We found no relationship between latitude and species range size.

Main conclusions

Our worldwide findings revealed a broader range of tidal marshes inhabited by terrestrial mammals, and higher values of species richness than previously reported. The bimodal pattern of species richness was consistent with the species–area hypothesis, but it also suggested that further studies of species distribution in relation to historical and environmental factors will yield significant insights about variables driving richness in tidal marshes. Despite terrestrial mammal ubiquitous distribution in these ecosystems, there are considerable geographic gaps as regards knowledge about their functional importance and the impact of alien species on tidal marsh functioning. Consequently, extending our research efforts is key to planning the conservation of these coastal ecosystems.  相似文献   

13.
Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large‐scale patterns of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic and lotic habitats across 25 pre‐defined biogeographical regions of European freshwaters. We used the range of elevation of each region as a proxy for habitat diversity. We investigated the relationships between species richness, habitat availability and habitat diversity with univariate and multiple regression analyses. Results Species richness increased with habitat availability for lentic species but not for lotic species. Species richness increased with elevational range for lotic species but decreased for lentic species. For both groups, neither habitat availability nor diversity could account for previously reported latitudinal patterns in species richness. For lotic species, richness declined with latitude, whereas there was no relationship between habitat availability and latitude. For lentic species, richness showed a hump‐shaped relationship with latitude, whereas available habitat increased with latitude. Main conclusions Habitat availability and diversity are poor predictors of species richness of the European freshwater fauna across large scales. Our results indicate that the distributions of European freshwater animals are probably not in equilibrium and may still be influenced by history, namely the recurrent European glaciations and possible differences in post‐glacial recolonization. The distributions of lentic species appear to be closer to equilibrium than those of lotic species. This lends further support to the hypothesis that lentic species have a higher propensity for dispersal than lotic species.  相似文献   

14.
Speciation is the process that ultimately generates species richness. However, the time required for speciation to build up diversity in a region is rarely considered as an explanation for patterns of species richness. We explored this "time-for-speciation effect" on patterns of species richness in emydid turtles. Emydids show a striking pattern of high species richness in eastern North America (especially the southeast) and low diversity in other regions. At the continental scale, species richness is positively correlated with the amount of time emydids have been present and speciating in each region, with eastern North America being the ancestral region. Within eastern North America, higher regional species richness in the southeast is associated with smaller geographic range sizes and not greater local species richness in southern communities. We suggest that these patterns of geographic range size variation and local and regional species richness in eastern North America are caused by glaciation, allopatric speciation, and the time-for-speciation effect. We propose that allopatric speciation can simultaneously decrease geographic range size and increase regional diversity without increasing local diversity and that geographic range size can determine the relationship between alpha, beta, and gamma diversity. The time-for-speciation effect may act through a variety of processes at different spatial scales to determine diverse patterns of species richness.  相似文献   

15.
Abstract. 1. Membracid species richness declines with increasing latitude in the Western hemisphere but begins to increase again in temperate regions. In northern latitudes this transition occurs in the highlands of Mexico and is the result of the emergence of a new tribe and greater host specialization.
2. The relationship between number of species per genus and latitude is parabolic.
3. We suggest the low number of species per genus in tropical regions may be due to the lack of host specialization and reduced coordination of life history with host phenology.  相似文献   

16.
Abstract. The study was conducted in deciduous forests of two Swedish regions, Öland and Uppland. It had two objectives: to (1) test the species pool hypothesis by examining if differences in small‐scale species richness are related to differences in large‐scale species richness and the size of the regional species pool, and (2) to examine the relationship between species richness and productivity and its scale‐dependence. The first data set comprised 36 sites of moderate to high productivity. In each site, we recorded the presence of vascular plant species in nested plots ranging from 0.001 to 1000 m2 and measured several environmental variables. Soil pH and Ellenberg site indicator scores for nitrogen were used as estimators of productivity. The second data set included 24 transects (each with 20 1‐m2 plots) on Öland in sites with low to high productivity. Species number, soil pH and relative light intensity were determined in each plot. The forest sites on Öland were more species‐rich than the Uppland sites on all spatial scales, although environmental conditions were similar. Small‐scale and large‐scale species richness were positively correlated. The results present evidence in favour of the species pool hypothesis. In the nested‐plots data set, species number was negatively correlated with pH and nitrogen indicator scores, whereas a unimodal relationship between species number and pH was found for the transect data set. These results, as well as previously published data, support the hump‐shaped relationship between species richness and productivity in Swedish deciduous forests. Two explanations for the higher species richness of the sites with moderate productivity are given: first, these sites have a higher environmental heterogeneity and second, they have a larger ‘habitat‐specific’ species pool.  相似文献   

17.
Regularities in species richness are widely observed but controversy continues over its mechanistic explanation. Because richness patterns are usually a compound measure derived from taxonomically diverse species with different ecological requirements, these analyses may confound diverse causes of species numbers. Here we investigate species richness in the aquatic beetle fauna of Europe, separating major taxonomic groups and two major ecological types, species occurring in standing and running water bodies. We collated species distributions for 800+ species of water beetles in 15 regions across western Europe. Species number in any of these regions was related to three variables: total area size, geographic connectedness of the area, and latitude. Pooled species numbers were accurately predicted, but correlations were different for species associated with either running or standing water. The former were mostly correlated with latitude, while the latter were only correlated with the measure of connectedness or with area size. These differences were generally also observed in each of the four phylogenetically independent lineages of aquatic Coleoptera when analysed separately. We propose that effects of habitat, in this case possibly mediated by different long term persistence of running and standing water bodies, impose constraints at the population or local level which, if effective over larger temporal and spatial scales, determine global patterns of species richness.  相似文献   

18.
To improve understanding of the biogeographical consequences of species introduction, we examined whether introduced soil macroinvertebrates differ from natives in the relationship between species richness and key environmental predictors, and whether such differences affect the relationship between native and introduced species richness. For North America north of Mexico, we summarized jurisdiction occurrence data for seven macroinvertebrate taxa with strong influences on soil biodiversity or processes. We analysed the relationships of native and introduced species richness to each other using linear regression; to latitude using Gaussian regressions; and, using the residuals of the richness–latitude regressions, to distance from coasts, human population density, and human population size using regression and correlation. We found weak to strong positive relationships between native and introduced species richness. This variation was related to divergent relationships of native and introduced species with latitude, human population density, and distance from coasts. Native species richness declined with increasing latitude for all taxa, as did introduced species richness for taxa with predominantly lower‐latitude origins (ants, termites, non‐lumbricid earthworms). In contrast, introduced species richness peaked at higher latitudes for four taxa of predominantly Palearctic origins (weevils, ground beetles, lumbricid earthworms, isopods). Partitioning introduced taxa within these groups based on region of origin, we found that Palearctic taxa were distributed at higher latitudes than non‐Palearctic taxa. Thus source region appears to strongly influence introduced species richness–latitude relationships. Compared to natives, introduced species exhibited more positive relationships with human population density and negative relationships with distance from coasts, but did not differ in relationships with human population size. Thus coastal, densely populated regions are likely to have a higher proportion of introduced soil macroinvertebrate species. These differences between distribution of native and introduced species tend to weaken positive correlations between native and introduced species richness, especially for taxa dominated by Palearctic introductions.  相似文献   

19.
Aim Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness–productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location We analysed 231 plots ranging from 34.0° to 48.3° N latitude and from 75.0° to 124.2° W longitude in the United States. Methods We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light‐blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control.  相似文献   

20.
Aim The goal of our study was to test fundamental predictions of biogeographical theories in tropical reef fish assemblages, in particular relationships between fish species richness and island area, isolation and oceanographic variables (temperature and productivity) in the insular Caribbean. These analyses complement an analogous and more voluminous body of work from the tropical Indo‐Pacific. The Caribbean is more limited in area with smaller inter‐island distances than the Indo‐Pacific, providing a unique context to consider fundamental processes likely to affect richness patterns of reef fish. Location Caribbean Sea. Methods We compiled a set of data describing reef‐associated fish assemblages from 24 island nations across the Caribbean Sea, representing a wide range of isolation and varying in land area from 53 to 110,860 km2. Regression‐based analyses compared the univariate and combined effects of island‐specific physical predictors on fish species richness. Results We found that diversity of reef‐associated fishes increases strongly with increasing island area and with decreasing isolation. Richness also increases with increasing nearshore productivity. Analyses of various subsets of the entire data set reveal the robustness of the richness data and biogeographical patterns. Main conclusions Within the relatively small and densely packed Caribbean basin, fish species richness fits the classical species–area relationship. Richness also was related negatively to isolation, suggesting direct effects of dispersal limitation in community assembly. Because oceanic productivity was correlated with isolation, however, the related effects of system‐wide productivity on richness cannot be disentangled. These results highlight fundamental mechanisms that underlie spatial patterns of biodiversity among Caribbean coral reefs, and which are probably also are functioning in the more widespread and heterogeneous reefs of the Indo‐Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号