首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Transposable elements (TEs) are DNA segments that can mediate or cause movement within genomes. We performed a comprehensive, whole-genome analysis of annotated TEs in rice (Oryza sativa L.) and Arabidopsis thaliana, focusing on their expression (mRNA data) and silencing (small RNA data), and we compared these data with annotated genes that are not annotated as transposons. TEs demonstrated higher levels of antisense mRNA expression in comparison to non-TE genes. The majority of the TEs were silenced, as demonstrated by higher levels of small RNAs and a lack of mRNA MPSS data. When TEs were expressed, their activity was usually limited to just one or a few of the mRNA libraries. When we examined TE expression at the whole-genome level and across the complete mRNA dataset, we observed that most activity was contributed by a few highly expressed transposable elements. These TEs were characterized by their low copy number and few matching small RNAs. Our results help define the relationship between gene expression and gene silencing for TEs, and indicate that TE silencing can impact neighboring genes, perhaps via a mechanism of heterochromatin formation and spreading. These data may be used to define active TEs and families of transposable elements that continue to shape plant genomes.  相似文献   

3.
To study the genome-wide impact of transposable elements (TEs) on the evolution of protein-coding regions, we examined 13 799 human genes and found 533 (approximately 4%) cases of TEs within protein-coding regions. The majority of these TEs (approximately 89.5%) reside within 'introns' and were recruited into coding regions as novel exons. We found that TE integration often has an effect on gene function. In particular, there were two mouse genes whose coding regions consist largely of TEs, suggesting that TE insertion might create new genes. Thus, there is increasing evidence for an important role of TEs in gene evolution. Because many TEs are taxon-specific, their integration into coding regions could accelerate species divergence.  相似文献   

4.
Gene BoGSL-PRO is associated with presence of 3-carbon side-chain glucosinolates (GSL). This gene is a member of the methylthioalkylmalate synthase (MAM) gene family. A BAC clone of Brassica oleracea, B21F5, containing this gene, was sequenced, annotated and compared to its corresponding region in Arabidopsis thaliana. Twelve protein-coding genes and 10 transposable elements were found in this clone. The corresponding region in A. thaliana chromosome I has 14 genes and no transposable elements. Analysis of MAM gene family in both species, which also include genes controlling 4-carbon side-chain GSL, separated the genes in two groups based on exon numbers and function. Phylogenetic analysis of the amino acid sequences encoded by these genes suggest that these two groups were produced by a duplication that must have occurred before the divergence of the Rosid and Asterid lineages of angiosperms. Comparison with putative orthologs from several prokaryotes further suggest that the members of the gene family with 10 exons, which encode proteins involved in 4-carbon side-chain GSL biosynthesis, were derived via truncation of the 3′ end from ancestral genes more similar in length to those with 12 exons, which encode proteins involved in 3-carbon side-chain GSL biosynthesis. Lower gene density in B. oleracea compared to A. thaliana is due in part to presence of transposable elements (TE) mostly in inter-genic regions.  相似文献   

5.
6.
7.
8.
Sakai H  Tanaka T  Itoh T 《Gene》2007,392(1-2):59-63
Despite a wide distribution of transposable elements (TEs) in the genomes of higher eukaryotes, much of their evolutionary significance remains unclear. Recent studies have indicated that TEs are involved with biological processes such as gene regulation and the generation of new exons in mammals. In addition, the completion of the genome sequencings in Arabidopsis thaliana and Oryza sativa has permitted scientist to describe a genome-wide overview in plants. In this study, we examined the positions of TEs in the genome of O. sativa. Although we found that more than 10% of the structural genes contained TEs, they were underrepresented in exons compared with non-exonic regions. TEs also appeared to be inserted preferentially in 3'-untranslated regions in exons. These results suggested that purifying selection against TE insertion has played a major role during evolution. Moreover, our comparison of the numbers of TEs in the protein-coding regions between single copy genes and duplicate genes showed that TEs were more frequent in duplicate than single copy genes. This observation indicated that gene duplication events created a large number of functionally redundant genes. Subsequently, many of them were destroyed by TEs because the redundant copies were released from purifying selection. Another biological role of TEs was found to be the recruitment of new exons. We found that approximately 2% of protein-coding genes contained TEs in their coding regions. Insertion of TEs in genic regions may have the potential to be an evolutionary driving force for the creation of new biological functions.  相似文献   

9.
10.
11.
The cellulose synthase-like (ZmCSL) gene family of maize was annotated and its expression studied in the maize mesocotyl. A total of 28 full-length CSL genes and another 13 partial sequences were annotated; four are predicted to be pseudogenes. Maize has all of the CSL subfamilies that are present in rice, but the CSLC subfamily is expanded from 6 in rice to 12 in maize, and the CSLH subfamily might be reduced from 3 to 1. Unlike rice, maize has a gene in the CSLG subfamily, based on its sequence similarity to two genes annotated as CSLG in poplar. Light regulation of glycan synthase enzyme activities and CSL gene expression were analyzed in the mesocotyl. A Golgi-localized glucan synthase activity is reduced by ~50% 12 h after exposure to light. β-1,4-Mannan synthase activity is reduced even more strongly (>85%), whereas β-1,4-xylan synthase, callose synthase, and latent IDPase activity respond only slightly, if at all, to light. At least 17 of the CSL genes (42%) are expressed in the mesocotyl, of which four are up-regulated at least twofold, seven are down-regulated at least twofold, and six are not affected by light. The results contribute to our understanding of the structure of the CSL gene family in an important food and biofuel plant, show that a large percentage of the CSL genes are expressed in the specialized tissues of the mesocotyl, and demonstrate that members of the CSL gene family are differentially subject to photobiological regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
TALE (three-amino acid loop extension)转录因子在植物生长发育及细胞分化过程中起重要作用.在多种植物中均已鉴定出TALE转录因子的家族成员,但是萝卜TALE转录因子家族的研究鲜有报道.文中通过生物信息学手段在象牙白萝卜全基因组中鉴定出了分布于9条染色体上的33个TALE家族基因.研究...  相似文献   

15.
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
To understand the metabolic characteristics of Clostridium acetobutylicum and to examine the potential for enhanced butanol production, we reconstructed the genome-scale metabolic network from its annotated genomic sequence and analyzed strategies to improve its butanol production. The generated reconstructed network consists of 502 reactions and 479 metabolites and was used as the basis for an in silico model that could compute metabolic and growth performance for comparison with fermentation data. The in silico model successfully predicted metabolic fluxes during the acidogenic phase using classical flux balance analysis. Nonlinear programming was used to predict metabolic fluxes during the solventogenic phase. In addition, essential genes were predicted via single gene deletion studies. This genome-scale in silico metabolic model of C. acetobutylicum should be useful for genome-wide metabolic analysis as well as strain development for improving production of biochemicals, including butanol. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. L. and H. Y. equally contributed to this work.  相似文献   

18.
19.
20.
Arabidopsis thaliana is an important model system for the study of plant biology. We have analyzed the complete genome sequences of Arabidopsis by using a newly developed windowless method for the GC content computation, the cumulative GC profile. It is shown that the Arabidopsis genome is organized into a mosaic structure of isochores. All the centromeric regions are located in GC-rich isochores, called centromere-isochores, which are characterized by a high GC content but low gene and T-DNA insertion densities. This characteristic distinguishes centromere-isochores from the other class of GC-rich isochores, called GC-isochores, which have high gene and T-DNA insertion densities. Consequently, 15 isochores have been identified, i.e., 7 AT-isochores, 3 GC-isochores, and 5 centromere-isochores. The genes in centromere-isochores, which have the highest GC content, have much shorter intron lengths and lower intron numbers, compared to those of the other two types. There is also considerable difference in the numbers and lengths of transposable elements (TEs) between AT and GC-isochores, i.e., the TE number (length) of AT-isochores is 6.3 (7.3) times that of GC-isochores. It is generally believed that TEs are accumulated in the regions surrounding the centromeres. However, within these TE-rich regions, there are regions of extremely low TE numbers (TE deserts), which correspond to the positions of centromere-isochores. In addition, a heterochromatic knob is located at the boundary of an AT-isochore. Furthermore, we show that the differences in GC content among isochores are mainly due to the GC content variation of introns, the third codon positions and intergenic regions.[Reviewing Editor: Martin Kreitman]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号