首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The effect of pH on the V(max.) and concentration of NAD(+) at half-maximum velocity at a constant isocitrate concentration was examined, and the results were related to the requirements for binding of H(+) ions to the enzyme. 2. The effect of varying the NAD(+) concentration on the pH optimum with constant isocitrate concentration was studied. 3. A comparison has been made between the effect of isocitrate concentration on the characteristics of binding of NAD(+) and the effect of NAD(+) concentration on the characteristics of isocitrate binding at three different pH values. 4. The mechanistic and metabolic significance of these studies is considered.  相似文献   

2.
1. The sensitivity of the NAD(+)-specific isocitrate dehydrogenase from baker's yeast towards inhibition by anions decreases with decrease in pH. The patterns of the pH-dependence of the enzymic activity can be explained by this effect. 2. In the presence of a high isocitrate concentration, citrate, unlike AMP, has no antagonizing effect on the inhibition of the enzyme by anions. In the presence of AMP, citrate inhibits the enzyme at high isocitrate concentration and activates at low isocitrate concentration. 3. The effects on the enzymic activity of the previous incubation of the enzyme were studied in relation to the substrate concentration, the chloride concentration and the presence of citrate and AMP.  相似文献   

3.
1. The mitochondrial NADH dehydrogenase (EC 1.6.99.3) of Candida utilis exhibited altered properties when the organism was grown under iron-limited conditions. No suitable acceptor was found for assay of this enzyme from iron-limited cells. 2. Mitochondrial membrane proteins from C. utilis were analysed by polyacrylamide-gel electrophoresis. Compared with glycerol-limited cells, iron limitation resulted in the loss of at least two polypeptides from the mitochondrial membrane. 3. Neither of the polypeptides affected by iron limitation was part of a cytochrome, although one of them was part of the mitochondrial NADH dehydrogenase. 4. Non-haem iron of mitochondrial membranes was released in the presence of sodium dodecyl sulphate, and electrophoresis in solutions of this detergent cannot be used directly to identify iron-sulphur proteins. Non-ionic detergents do not release non-haem iron but nor do they provide a satisfactory system for electrophoretic separation.  相似文献   

4.
1. Superovulated rat ovary was found to contain high activities of NADP-malate dehydrogenase and NADP-isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD-malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP-citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP-malate dehydrogenase and NADP-isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective K(m) values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP-malate dehydrogenase or NADP-isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed.  相似文献   

5.
1. Rat liver and heart major isoenzymes of NADP-isocitrate dehydrogenase have each been purified about 100-fold by a combination of ammonium sulphate fractionation and chromatography on ion-exchange cellulose and their properties compared. 2. The properties were similar in respect of pH, inhibition by Hg(2+) and Michaelis constants for isocitrate and NADP. 3. Some of the properties of the isoenzymes were different. 4. The heart isoenzyme was activated about 210% by 0.8m-ammonium sulphate whereas the liver isoenzyme was unaffected. The heart isoenzyme showed greater sensitivity to inactivation by heat (30 degrees C for 30min), whereas the liver isoenzyme was more sensitive to inactivation by p-chloromercuribenzoate and by Cu(2+). 5. The Michaelis constants with 3-acetylpyridine-adenine dinucleotide phosphate showed a twofold difference between liver and heart isoenzyme. 6. The differential sensitivity to heat and its mainly non-cytoplasmic location may be an explanation of the failure of plasma isocitrate dehydrogenase activity to increase after a myocardial infarction.  相似文献   

6.
1. The separation of nucleotide impurities from commercial NADP preparations by chromatography is described. All the preparations studied contained 0·1–0·2% of NAD. 2. The activity of pure crystalline liver alcohol dehydrogenase with NADP as coenzyme has been confirmed. Initial-rate data are reported for the reaction at pH 6·0 and 7·0 with ethanol and acetaldehyde as substrates. With NADP and NADPH2 of high purity, the maximal specific rates were similar to those obtained with NAD and NADH2, but the Michaelis constants for the former coenzymes were much greater than those for the latter. 3. The oxidation of ethanol by NADP is greatly inhibited by NADH2, and this accounts for low values of certain initial-rate parameters obtained with commercial NADP preparations containing NAD. The kinetics of the inhibition are consistent with competitive inhibition in a compulsory-order mechanism. 4. Initial-rate data with NAD and NADPH2 do not conform to the requirements of the mechanism proposed by Theorell & Chance (1951), in contrast with results previously obtained with NAD and NADH2. The possibility that the deviations are due to competing nucleotide impurity in the oxidized coenzyme cannot be excluded. The data show that the enzyme reacts more slowly with, and has a smaller affinity for, NADP and NADPH2 than NAD and NADH2. 5. Phosphate behaves as a competitive inhibitor towards NADP.  相似文献   

7.
1. An NADH-ferricyanide reductase activity has been isolated from the respiratory chain of Torulopsis utilis by using detergents. The isolated enzyme contains non-haem iron, acid-labile sulphide and FMN in the molar proportions 27.5:28.4:1. The preparation is free of FAD and largely free of cytochrome. 2. The enzyme catalyses ferricyanide reduction by NADPH at about 1% of the rate with NADH, and reacts poorly with acceptors other than ferricyanide. The rates of reduction of some acceptors are, as percentages of the rate with ferricyanide: menadione, 0.35%; lipoate, 0.01%; cytochrome c, 0.065%; dichlorophenolindophenol, 0.35%; ubiquinone-1, 0.08%. 3. Several properties of submitochondrial particles of T. utilis (non-haem iron, acid-labile sulphide, FMN and an NADH-reducible electron-paramagnetic-resonance signal) were found to co-purify with the NADH-ferricyanide reductase activity. Thus about 70% of the FMN and, within the limits of accuracy of the experiments, 100% of the non-haem iron and acid-labile sulphide of submitochondrial particles derived from T. utilis cells grown under conditions of glycerol limitation (but relatively low iron availability) can be attributed to the NADH-ferricyanide reductase. 4. It was also shown that the component of submitochondrial particles specifically bleached at 460nm by NADH [species 1 of Ragan & Garland (1971)] co-purifies with the NADH-ferricyanide reductase. 5. This successful purification of an NADH dehydrogenase from T. utilis forms a starting point for investigating the molecular properties of phenotypically modified mitochondrial NADH oxidation pathways that lack energy conservation between NADH and the cytochromes.  相似文献   

8.
Of the two NADP-linked isocitrate dehydrogenases in Acinetobacter lwoffi the higher-molecular-weight form, isoenzyme-II, is reversibly stimulated sixfold by low concentrations of glyoxylate or pyruvate. Kinetic results indicate that this stimulation of activity involves both an increase in V(max.) and a decrease in the apparent K(m) values for substrates, most markedly that for NADP(+). Other changes brought about by glyoxylate or pyruvate include a shift in the pH optimum for activity and an increased stability to inactivation by heat or urea. Mixtures of glyoxylate plus oxaloacetate, known to inhibit isocitrate dehydrogenases from other organisms, produce inhibition of both A. lowffi isoenzymes, and do not reflect the stimulatory specificity of glyoxylate for isoenzyme-II. Isoenzyme-II is also stimulated by AMP and ADP, but the activation by glyoxylate or pyruvate is shown to be quite independent of the adenylate activation. Differential desensitization of the enzyme by urea to the two types of activator further supports the view that the enzyme possesses two distinct allosteric regulatory sites. The metabolic significance of the activations is discussed.  相似文献   

9.
The effects of chlorides on NADP-specific isocitrate dehydrogenase from Halobacterium salinarium were investigated. The enzyme is stabilized by potassium chloride and sodium chloride and this effect is discussed in relation to the Hill (1913) equation. Kinetics of the enzyme were studied within a range of concentrations of potassium chloride and sodium chloride. Apparent Michaelis constants for both substrates were affected by salt concentration, the effect being greater in sodium chloride than in potassium chloride. Minimal apparent Michaelis constants for both substrates were similar to the corresponding constants reported for yeast isocitrate dehydrogenase. V(max.) was maximal in each salt at a concentration of about 1m. The maximum was higher in sodium chloride than in potassium chloride. At salt concentrations above about 2.3m, the apparent V(max.) was lower in sodium chloride than in potassium chloride, and at salt concentrations below 0.75-1.0m, each salt behaved as a linear activator of the enzyme. Within this concentration range salt and NADP(+) acted competitively; the activation by salt was overcome at finite concentrations of NADP(+). At concentrations above about 1m, potassium chloride was a linear non-competitive inhibitor of the enzyme. Within the range 1.0-2.5m, sodium chloride was also a linear non-competitive inhibitor, but above 2.5m it caused more pronounced inhibition.  相似文献   

10.
1. Two methods of preparing pig heart soluble malate dehydrogenase are described. A slow method yields an enzyme composed of three electrophoretically separable subforms. The more rapid method reproducibly gives a high yield of an enzyme that consists predominantly of the least acid subform. 2. The A(1%) (1cm) of the protein was redetermined as 15 at 280nm. By using this value the enzyme molecule was found to contain two independent and indistinguishable NADH-binding sites in titrations with NADH. 3. No evidence was found for the dissociation of the enzyme in the concentration range 0.02-7.2mum. 4. l-Malate (0.1m) tightened the binding of NADH to both pig and ox heart enzyme (2-fold), but, in contrast with the report by Mueggler, Dahlquist & Wolfe [(1975) Biochemistry14, 3490-3497], did not cause co-operative interactions between the binding sites. 5. Fructose 1,6-bisphosphate had no effect on the binding of NADH to the pig heart enzyme, but with the ox heart enzyme the NADH is slowly oxidized. This slow oxidation explains the ;sigmoidal' binding curves obtained when NADH was added to ox heart soluble malate dehydrogenase in the presence of fructose 1,6-bisphosphate [Cassman (1973) Biochem. Biophys. Res. Commun.53, 666-672] without the postulate of site-site interactions. 6. It is concluded that neither l-malate nor fructose 1,6-bisphosphate could in vivo modulate the activity of soluble malate dehydrogenase and alter the rates of transport of NADH between the cytosol and the mitochondrion. 7. Details of the preparation of soluble malate dehydrogenase have been deposited as Supplementary Publication SUP 50080 (8 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem. J. (1978) 169, 5.  相似文献   

11.
1. The stereospecificity of 20 enzymes from plants is reported. 2. The stereospecificity of all known forms of malate dehydrogenase in plants and animals has been shown to be A-specific. 3. The generalization that `the stereospecificity of a particular reaction is independent of the source of the enzyme' is confirmed for a total of 12 plant enzymes. 4. A new generalization is proposed: `When a metabolic sequence involves consecutive nicotinamide–adenine dinucleotide-dependent reactions, the dehydrogenases have the same stereospecificity.'  相似文献   

12.
Two isoenzymes of NADP-linked isocitrate dehydrogenase have been identified in Acinetobacter lwoffi and have been termed isoenzyme-I and isoenzyme-II. The isoenzymes may be separated by ion-exchange chromatography on DEAE-cellulose, by gel filtration on Sephadex G-200, or by zonal ultracentrifugation in a sucrose gradient. Low concentrations of glyoxylate or pyruvate effect considerable stimulation of the activity of isoenzyme-II. The isoenzymes also differ in pH-dependence of activity, kinetic parameters, stability to heat or urea and molecular size. Whereas isoenzyme-I resembles the NADP-linked isocitrate dehydrogenases from other organisms in having a molecular weight under 100000, isoenzyme-II is a much larger enzyme (molecular weight around 300000) resembling the NAD-linked isocitrate dehydrogenases of higher organisms.  相似文献   

13.
1. Incubation of NADH-ubiquinone oxidoreductase (Complex I) with chymotrypsin caused loss of rotenone-sensitive ubiquinone-1 reduction and an increase in rotenone-insensitive ubiquinone reduction. 2. Within the same time-course, NADH-K(3)Fe(CN)(6) oxidoreductase activity was unaffected. 3. Mixing of chymotrypsin-treated Complex I with Complex III did not give rise to NADH-cytochrome c oxidoreductase activity. 4. Gel electrophoresis in the presence of sodium dodecyl sulphate revealed selective degradation of several constituent polypeptides by chymotrypsin. 5. With higher chymotrypsin concentrations and longer incubation times, a decrease in NADH-K(3)Fe(CN)(6) oxidoreductase was observed. The kinetics of this decrease correlated with solubilization of the low-molecular-weight type-II NADH dehydrogenase (subunit mol.wts. 53000 and 27000) and with degradation of a polypeptide of mol.wt. 30000. 6. Phospholipid-depleted Complex I was more rapidly degraded by chymotrypsin. Specifically, a subunit of mol.wt. 75000, resistant to chymotrypsin in untreated Complex I, was degraded in phospholipid-depleted Complex I. In addition, the 30000-mol.wt. polypeptide was also more rapidly digested, correlating with an increased rate of transformation to type II NADH dehydrogenase.  相似文献   

14.
True values of Michaelis constants of the NADP(+)-specific isocitrate dehydrogenase from Halobacterium salinarium were not very different from those of the apparent constants reported by Aitken et al. (1970). The true constants were affected by salt in a similar manner to that of the apparent constants obtained with NADP(+) at fixed concentrations of 1.0-0.2mm and threo-d(s)-(+)-isocitrate at fixed concentrations of 2.0-0.125mm. The response of apparent V(max.) to salt concentration was highly dependent on fixed substrate concentration in solutions of sodium chloride but much less so in solutions of potassium chloride. At several levels the results emphasize the difficulty of generalizing about the salt relations of a halophil enzyme without adequate attention to substrate concentration. The enzyme has at least two different reaction mechanisms depending on salt concentration. In its ;physiological' form (i.e. in 1.0m-potassium chloride), and also in 1.0m-sodium chloride, the reaction mechanism is ordered with NADP(+) the first substrate added and NADPH the last product released. In 0.25m-sodium chloride, however, the mechanism is different and is probably non-sequential. In 4.0m-sodium chloride with low concentrations of either fixed substrate, there was evidence of a co-operative action of the variable substrate. The evidence suggests that salt participates in the reaction mechanism in two ways: one is the reversible addition to the enzyme in a manner analogous to that of a substrate; the other is dead-end complex-formation. The relative contributions of these two types of reaction determine whether salt activates or inhibits the enzyme. In addition, the inhibition caused by high concentrations of sodium chloride is more complex than the corresponding inhibition by potassium chloride. Gel-filtration experiments indicated that at very low salt concentrations the enzyme has an apparent molecular weight of about 70800. In ;physiological' concentrations of potassium chloride the enzyme appears to be a dimer (mol.wt. 122000-135000) and, in 1.0-4.0m-sodium chloride, it behaves as a trimer or tetramer (mol.wt. 224000-251000). A preliminary method of purifying the enzyme is described.  相似文献   

15.
The heat of the reaction NAD(+)+propan-2-ol=NADH+acetone+H(+) was determined to be 42.5+/-0.6kJ/mol (10.17+/-0.15kcal/mol) from equilibrium measurements at 9-42 degrees C catalysed by yeast alcohol dehydrogenase. With the aid of thermochemical data for acetone and propan-2-ol the values of DeltaH=-29.2kJ/mol (-6.99kcal/mol) and DeltaG(0)=22.1kJ/mol (5.28kcal/mol) are derived for the reduction of NAD (NAD(+)+H(2)=NADH+H(+)). These values are consistent with analogous but less accurate data for the ethanol-acetaldehyde reaction. Thermodynamic data for the reduction of NAD and NADP are summarized.  相似文献   

16.
Oxamate competes with pyruvate for the substrate binding site on the E(NADH) complex of pig skeletal muscle lactate dehydrogenase. When this enzyme was mixed with saturating concentrations of NAD(+) and lactate in a stopped-flow rapid-reaction spectrophotometer there was no transient accumulation of enzyme complexes with the reduced nucleotide. The steady-state rate of formation of free NADH was reached within the dead-time of the instrument (3ms). When oxamate was added to inhibit the steady state and to uncouple the equilibration: [Formula: see text] through the rapid formation of E(NADH) (Oxamate), the rate of formation of E(NADH) could be measured by observation of the first turnover. This pH-dependent transient is controlled by the rate of dissociation of pyruvate and the fraction of the enzyme in the form E(NADH) (Pyruvate).  相似文献   

17.
The binding of NAD(+) and NADH to bovine liver UDP-glucose dehydrogenase was studied by using gel-filtration and fluorescence-titration methods. The enzyme bound 0.5mol of NAD(+) and 2 mol of NADH/mol of subunit at saturating concentrations of both substrate and product. The dissociation constant for NADH was 4.3mum. The binding of NAD(+) to the enzyme resulted in a small quench of protein fluorescence whereas the binding of NADH resulted in a much larger (60-70%) quench of protein fluorescence. The binding of NADH to the enzyme was pH-dependent. At pH8.1 a biphasic profile was obtained on titrating the enzyme with NADH, whereas at pH8.8 the titration profile was hyperbolic. UDP-xylose, and to a lesser extent UDP-glucuronic acid, lowered the apparent affinity of the enzyme for NADH.  相似文献   

18.
The inhibition of lactate dehydrogenase at high pyruvate concentration was studied in three ways. First, a rapid decrease in the rate of the enzyme reaction was observed; secondly, the rate of formation of a pyruvate-NAD(+) compound was followed by the change in E(325); thirdly, the rate of quenching of the protein fluorescence was measured. The data obtained at pH6.0 at different temperatures and ionic strengths as functions of pyruvate, NAD(+) and enzyme concentrations show that the extent of inhibition can be correlated with the reversible formation of a compound between pyruvate and enzyme-bound NAD(+). It is suggested that the detailed kinetic analysis of the formation of this abortive ternary compound will give pertinent information about properties of the enzyme-NAD(+) compound involved in the normal catalytic process.  相似文献   

19.
20.
Mitochondria from rat white adipose tissue were prepared, exhibiting good respiratory control and P/O ratios. They would not oxidize NADH unless NNN'N'-tetramethyl-p-phenylenediamine was added as a carrier of reducing equivalents. These mitochondria were found to oxidize neither l-glycerol 3-phosphate nor l-glutamate plus l-malate at significant rates. The activity of aspartate aminotransferase in these mitochondria was found to be low compared with that found in rat liver mitochondria. As a consequence of this, the adipose-tissue mitochondria exhibited very low rates of cytoplasmic NADH oxidation in a reconstituted Borst (1962) cycle compared with liver mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号