首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the complete sequence-specific assignment of the backbone resonances and most of the side-chain resonances in the 1H NMR spectrum of alpha-bungarotoxin by two-dimensional NMR. Problems with resonance overlap were resolved with the assistance of the HRNOESY experiment described in an accompanying paper [Basus, V.J., & Scheek, R.M. (1988) Biochemistry (second paper of three in this issue)]. Significant differences exist between the solution structure described here and the crystal structure of alpha-bungarotoxin, on the basis of the proton to proton distances obtained by nuclear Overhauser enhancement spectroscopy (NOESY) and the corresponding distances from the X-ray crystal structure [Love, R.A., & Stroud, R.M. (1986) Protein Eng. 1, 37]. These differences include a larger beta-sheet in solution and a different orientation of the invariant tryptophan, Trp-28, making the solution structure more consistent with the crystal structure of the homologous neurotoxin alpha-cobratoxin. Four errors in the order of the amino acids in the primary sequence were indicated by the NMR data. These errors were confirmed by chemical means, as described in an accompanying paper [Kosen, P.A., Finer-Moore, J., McCarthy, M.P., & Basus, V.J. (1988) Biochemistry (third paper of three in this issue)].  相似文献   

2.
V J Basus  R M Scheek 《Biochemistry》1988,27(8):2772-2775
Complete sequence-specific assignments of the 1H NMR spectrum of bungarotoxin were reported in the previous paper [Basus, V.J., Billeter, M., Love, R.A., Stroud, R.M., & Kuntz, I.D. (1988) Biochemistry (first paper of three in this issue)]. The assignment was significantly aided by the use of the homonuclear Hartman-Hahn relayed coherence transfer nuclear Overhauser enhancement spectroscopy experiment (HRNOESY) which we present here, as a modification of relayed coherence transfer nuclear Overhauser enhancement spectroscopy (relayed NOESY) [Wagner, G. (1984) J. Magn. Reson. 57, 497]. As shown here, HRNOESY resolves problems of proton resonance overlap especially in extended chain conformations as found in beta-sheets.  相似文献   

3.
Synthetic peptides corresponding to sequence segments of the nicotinic acetylcholine receptor (nAChR) alpha subunits have been used to identify regions that contribute to formation of the binding sites for cholinergic ligands. We have previously defined alpha-bungarotoxin (alpha-BTX) binding sequences between residues 180 and 199 of a putative rat neuronal nAChR alpha subunit, designated alpha 5 [McLane, K. E., Wu, X., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 9816-9824], and between residues 181 and 200 of the chick neuronal alpha 7 and alpha 8 subunits [McLane, K. E., Wu, X., Schoepfer, R., Lindstrom, J., & Conti-Tronconi, B. M. (1991) J. Biol. Chem. (in press)]. These sequences are relatively divergent compared with the Torpedo and muscle nAChR alpha 1 alpha-BTX binding sites, which indicates a serious limitation of predicting functional domains of proteins based on homology in general. Given the highly divergent nature of the alpha 5 sequence, we were interested in determining the critical amino acid residues for alpha-BTX binding. In the present study, the effects of single amino acid substitutions of Gly or Ala for each residue of the rat alpha 5(180-199) sequence were tested, using a competition assay, in which peptides compete for 125I-alpha-BTX binding with native Torpedo nAChR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The complete amino acid sequence of the biotinyl subunit from the enzyme transcarboxylase of Propionibacterium shermanii has been determined from the structures of overlapping tryptic and cyanogen bromide peptides together with sequenator analysis on the whole subunit. The subunit contains 123 amino acid residues. Eleven of nineteen residues in the region of biotin attachment, when compared to pyruvate carboxylase from avian liver (Rylatt, D. B., Keech, D. B., and Wallace, J. C. (1977) Arch. Biochem. Biophys. 183, 113-122), were found to be in identical positions relative to biocytin. There was less homology with acetyl-CoA carboxylase from Escherichia coli (Sutton, M. R., Fall, R. R., Nervi, A. M., Alberts, A. W., Vagelos, P. R., and Bradshaw, R. A. (1977) J. Biol. Chem. 252, 3934-3940), but in all of these biotin enzymes there was an alanylmethionyl-biocytinyl-methionine sequence. The secondary structure of the biotinyl subunit has been estimated using the method of Chou and Fasman (Chou, P. Y., and Fasman, G. D. (1978) Adv. Enzymol. 47, 45-148) and considered in relationship to the role of the biotinyl subunit in the structure and function in transcarboxylase.  相似文献   

5.
The primary structure of the basic isoform of Acanthamoeba profilin   总被引:6,自引:0,他引:6  
Acanthamoeba profilin-II [Kaiser, D.A., Sato, M., Ebert, R. F. and Pollard, T.D. (1986) J. Cell. Biol. 102, 221-226] was digested with trypsin or cleaved by 2-(2-nitrophenylsulphenyl)-3-methyl-3-bromoindolenine. The tryptic peptides were purified by reversed-phase-high-performance liquid chromatography and completely sequenced using automated gas-phase sequence analysis. The complete profilin-II sequence was deduced by ordering the tryptic peptides using the sequence information of the tryptophan-cleavage products. Acanthamoeba profilin-II was found to be homologous to the previously determined profilin-I sequence [Ampe, C., Vandekerckhove, J., Brenner, L., Tobacman, L. and Korn, E.D. (1985) J. Biol. Chem. 260, 834-840]. Like profilin-I, profilin-II consists of 125 amino acids, has a blocked NH2 terminus and a trimethyllysine residue at position 103. Profilin-II differs in at least 21 positions from one of the profilin-I isoforms. The amino acid exchanges are mainly concentrated in the middle part of the sequence. Profilin-II contains two more basic residues than profilin-I, which explains its higher isoelectric point.  相似文献   

6.
The structure of a peptide corresponding to residues 182-202 of the acetylcholine receptor alpha1 subunit in complex with alpha-bungarotoxin was solved using NMR spectroscopy. The peptide contains the complete sequence of the major determinant of AChR involved in alpha-bungarotoxin binding. One face of the long beta hairpin formed by the AChR peptide consists of exposed nonconserved residues, which interact extensively with the toxin. Mutations of these receptor residues confer resistance to the toxin. Conserved AChR residues form the opposite face of the beta hairpin, which creates the inner and partially hidden pocket for acetylcholine. An NMR-derived model for the receptor complex with two alpha-bungarotoxin molecules shows that this pocket is occupied by the conserved alpha-neurotoxin residue R36, which forms cation-pi interactions with both alphaW149 and gammaW55/deltaW57 of the receptor and mimics acetylcholine.  相似文献   

7.
The alpha-subunit of the nicotinic acetylcholine receptor (alphaAChR) contains a binding site for alpha-bungarotoxin (alpha-BTX), a snake-venom-derived alpha-neurotoxin. Previous studies have established that the segment comprising residues 173-204 of alphaAChR contains the major determinant interacting with the toxin, but the precise boundaries of this determinant have not been clearly defined to date. In this study, we applied NMR dynamic filtering to determine the exact sequence constituting the major alphaAChR determinant interacting with alpha-BTX. Two overlapping synthetic peptides corresponding to segments 179-200 and 182-202 of the alphaAChR were complexed with alpha-BTX. HOHAHA and ROESY spectra of these complexes acquired with long mixing times highlight the residues of the peptide that do not interact with the toxin and retain considerable mobility upon binding to alpha-BTX. These results, together with changes in the chemical shifts of the peptide protons upon complex formation, suggest that residues 184-200 form the contact region. At pH 4, the molecular mass of the complex determined by dynamic light scattering (DLS) was found to be 11.2 kDa, in excellent agreement with the expected molecular mass of a 1:1 complex, while at pH >5 the DLS measurement of 20 kDa molecular mass indicated dimerization of the complex. These results were supported by T(2) measurements. Complete resonance assignment of the 11.2 kDa complex of alpha-BTX bound to the alphaAChR peptide comprising residues 182-202 was obtained at pH 4 using homonuclear 2D NMR spectra measured at 800 MHz. The secondary structures of both alpha-BTX and the bound alphaAChR peptide were determined using 2D (1)H NMR experiments. The peptide folds into a beta-hairpin conformation, in which residues (R)H186-(R)V188 and (R)Y198-(R)D200 form the two beta-strands. Residues (R)Y189-(R)T191 form an intermolecular beta-sheet with residues (B)K38-(B)V40 of the second finger of alpha-BTX. These results accurately pinpoint the alpha-BTX-binding site on the alphaAChR and pave the way to structure determination of this important alphaAChR determinant involved in binding acetylcholine and cholinergic agonists and antagonists.  相似文献   

8.
The amino acid sequence of the 50-kDa fragment that is released by limited tryptic digestion of the head portion of rabbit skeletal muscle myosin was determined by analysis and alignment of sets of peptides generated by digestion of the fragment at arginine or methionine residues. This fragment contains residues 205-636 of the myosin heavy chain; among the residues of particular interest in this fragment are N epsilon-trimethyllysine, one of four methyl-amino acids in myosin, and Ser-324, which is photoaffinity labeled by an ATP analogue (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995). Combination of this sequence with those of the 23- and 20-kDa fragments yields an 809-residue sequence that constitutes most of the heavy chain of chymotryptic S-1 of this myosin.  相似文献   

9.
The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) alpha subunit forms a binding site for alpha-bungarotoxin (alpha-BTX) [e.g., see Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230]. Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR alpha 1 subunits were tested for their ability to bind 125I-alpha-BTX, and differences in alpha-BTX affinity were determined by using solution (IC50S) and solid-phase (KdS) assays. Panels of overlapping peptides corresponding to the complete alpha 1 subunit of mouse and human were also tested for alpha-BTX binding, but other sequence segments forming the alpha-BTX site were not consistently detectable. The Torpedo alpha 1(181-200) and the homologous frog and chicken peptides bound alpha-BTX with higher affinity (KdS approximately 1-2 microM, IC50s approximately 1-2 microM) than the human and calf peptides (Kds approximately 3-5 microM, IC50s approximately 15 microM). The mouse peptide bound alpha-BTX weakly when attached to a solid support (Kd approximately 8 microM) but was effective in competing for 125I-alpha-BTX in solution (IC50 approximately 1 microM). The cobra nAChR alpha 1-subunit peptide did not detectably bind alpha-BTX in either assay. Amino acid substitutions were correlated with alpha-BTX binding activity peptides from different species. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased alpha-BTX binding, whereas oxidation of the peptides had little effect. Modifications of the cysteine/cystine residues of the cobra peptide failed to induce alpha-BTX binding activity. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/alpha 1-subunit interface a vicinal disulfide bound was not required for alpha-BTX binding.  相似文献   

10.
The present paper describes the amino acid sequence analysis of the internal and COOH-terminal cyanogen bromide fragments of yeast inorganic pyrophosphatase (Sterner, R., Noyes, C., and Heinrikson, R.L. (1974) Biochemistry 13, 91-99). This information coupled with that derived from earlier structural studies of the enzyme (Sterner, R., AND Heinrikson, R.L. (1975) Arch. Biochem. Biophys. 165, 693-703) provides the complete covalent structure of the pyrophosphatase subunit. The majority of the sequence data was derived from automated Edman degradation of the intact cyanogen bromide fragments and the large tryptic peptides obtained from citraconylated derivates in which cleavages were restricted to arginyl residues. The structural determination was completed by analysis of tryptic and chymotryptic peptides from the decitraconylated fragments. The monomer peptide chain contains 285 amino acid residues and the molecular weight calculated from the sequence analysis is 32,042.  相似文献   

11.
The complete amino acid sequence of carboxamidomethylated anthranilate synthetase component II (AS II) from Pseudomonas putida has been determined by analysis of cyanogen bromide fragments, tryptic peptides from the citraconylated protein, and by analysis of subdigests of these peptides. AS II is a single polypeptide chain of 197 residues having a calculated molecular weight of 21,684. Previous studies (Goto, Y., Keim, P. S., Zalkin, H., and Heinrikson, R. L. (1976) J. Biol. Chem, 251, 941-949) identified a cysteine residue required for the formation of an acyl-enzyme intermediate. The protein has 3 cysteine residues at positions 54, 79, and 140. Cysteine-79 was alkylated selectively by iodoacetamide and by the glutamine affinity analogue L-2-amino-4-oxo-5-chloropentanoic acid. Based on this evidence cysteine-79 is the active site residue involved in formation of the acyl-enzyme intermediate. Comparison of the P. putida AS II sequence with that of the NH2-terminal 60 residues of the enzyme from Escherichia coli shows 38% sequence identity.  相似文献   

12.
Synthetic peptides corresponding to 57% of the sequence of alpha subunits of acetylcholine receptors from Torpedo californica electric organ and extending from the NH2 to the COOCH terminus have been synthesized. The alpha-bungarotoxin binding site on denatured alpha subunits was mapped within the sequence alpha 185-199 by assaying binding of 125I-alpha-bungarotoxin to slot blots of synthetic peptides. Further studies showed that residues in the sequence alpha 190-194, especially cysteines-alpha 192, 193, were critical for binding alpha-bungarotoxin. Reduction and alkylation studies suggested that these cysteines must be disulfide linked for alpha-bungarotoxin to bind. Binding sites for serum antibodies to native receptors or alpha subunits were mapped by indirect immunoprecipitation of 125I-peptides. Several antigenic sequences were identified, but a synthetic peptide corresponding to the main immunogenic region (which is highly conformation dependent) was not identified.  相似文献   

13.
The covalent structure of the rat liver 60 S ribosomal subunit protein L37 was determined. Twenty-four tryptic peptides were purified and the sequence of each was established; they accounted for all 111 residues of L37. The sequence of the first 30 residues of L37, obtained previously by automated Edman degradation of the intact protein, provided the alignment of the first 9 tryptic peptides. Three peptides (CN1, CN2, and CN3) were produced by cleavage of protein L37 with cyanogen bromide. The sequence of CN1 (65 residues) was established from the sequence of secondary peptides resulting from cleavage with trypsin and chymotrypsin. The sequence of CN1 in turn served to order tryptic peptides 1 through 14. The sequence of CN2 (15 residues) was determined entirely by a micromanual procedure and allowed the alignment of tryptic peptides 14 through 18. The sequence of the NH2-terminal 28 amino acids of CN3 (31 residues) was determined; in addition the complete sequences of the secondary tryptic and chymotryptic peptides were done. The sequence of CN3 provided the order of tryptic peptides 18 through 24. Thus the sequence of the three cyanogen bromide peptides also accounted for the 111 residues of protein L37. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. There is a disulfide bridge between half-cystinyl residues at positions 40 and 69. Rat liver ribosomal protein L37 is homologous with yeast YP55 and with Escherichia coli L34. Moreover, there is a segment of 17 residues in rat L37 that occurs, albeit with modifications, in yeast YP55 and in E. coli S4, L20, and L34.  相似文献   

14.
Pancreatic ribonuclease from muskrat (Ondatra zibethica) was isolated and its amino acid sequence was determined from tryptic digests of the performic acid-oxidized and the reduced and aminoethylated enzyme. The peptides have been positioned in the sequence by homology with other ribonucleases. This could be done unambiguously for all peptides except Arg-Arg (tentative position 32-33) and Ser-Arg (tentative position 75-76). The amino acid sequences of the peptides were determined by the dansyl-Edman method, with the exception of residues 23-25 and 99-102, which were positioned by homology. The enzyme differs in 38 positions from the enzyme from rat and in 31-42 positions from other mammalian pancreatic ribonucleases, while rat ribonuclease differs at 44-52 positions from the other enzymes. These data point to a common ancestry of the enzymes from muskrat and rat and an increased evolution rate of rat ribonuclease after divergence of the ancestors of both species. Muskrat ribonuclease contains no carbohydrate, although the enzyme possesses a recognition site for carbohydrate attachment in the sequence Asn-Val-Thr (62-64).  相似文献   

15.
Neuronal bungarotoxin has previously been shown, using two-dimensional 1H NMR spectroscopy, to have a triple-stranded antiparallel beta-sheet structure which dimerizes in solution [Oswald, R.E., Sutcliffe, M.J., Bamberger, M., Loring, R.H., Braswell, E., & Dobson, C.M. (1991) Biochemistry 30, 4901-4909]. In this paper, structural calculations are described which use the 582 experimentally measured NOE restraints in conjunction with 27 phi-angle restraints from J-value measurements. The positions of the N-terminal region and C-terminal region were poorly defined in the calculated structures with respect to the remainder of the structure. The region of the structure containing the triple-stranded beta-sheet was, however, well defined and similar to that found in the structure of homologous alpha-bungarotoxin (45% amino acid identity). The experimental restraints did not result in a well-defined dimer interface region because of the small number of NOEs which could be identified in this region. An approach was therefore adopted which produced model structures based to varying degrees on the alpha-bungarotoxin structure. Fourteen different structures were generated in this manner and subsequently used as starting points for refinement using dynamical simulated annealing followed by restrained molecular dynamics. This approach, which combines NMR data and homologous model building, has enabled a family of structures to be proposed for the dimeric molecule. In particular, Phe49 has been identified as possibly playing an important role in dimer formation, this residue in one chain interacting with the corresponding residue in the adjacent chain.  相似文献   

16.
Storage proteins of the albumin solubility fraction from seeds of Bertholletia excelsa H.B.K. were separated by reversed-phase high-performance liquid chromatography and their primary structures were determined by gas-phase sequencing on intact polypeptides and on the overlapping tryptic and thermolysin peptides. The 2S storage proteins consist of two subunits linked by disulphide bridges. The large subunit (8.5 kDa) is expressed in at least six different isoforms while the small subunit (3.6 kDa) consists of only one form. These proteins are extremely rich in glutamine, glutamic acid, arginine and the sulphur-containing amino acids cysteine and methionine. One of the variants even contains a sequence of six methionine residues in a row. Comparison with known sequences of 2S proteins of other dicotyledonous plants shows limited but distinct sequence homology. In particular, the positions of the cysteine residues relative to each other appear to be completely conserved, suggesting that tertiary structure constraints imposed by disulphide bridges dominate sequence conservation. It has been proposed that the two subunits of a related protein (the Brassica napus storage protein) is cleaved from a precursor polypeptide [Crouch, M. L., Tenbarge, K. M., Simon, A. E. & Ferl, R. (1983) J. Mol. Appl. Genet. 2,273-283]. The amino acid sequence homology of the Brazil nut protein with the former suggests that a similar protein processing event could occur.  相似文献   

17.
Structure of bovine milk lipoprotein lipase   总被引:6,自引:0,他引:6  
The primary structure of bovine milk lipoprotein lipase (bLPL) was determined by alignment of peptides produced by tryptic digestion, Staphylococcus aureus V8 protease digestion, and cyanogen bromide cleavage. bLPL consists of 450 amino acid residues. Most tryptic peptides were isolated and analyzed, except for the dipeptide, Glu-Lys (position 423-424), and the 2 Lys at positions 416 and 488. Peptides resulting from digestion by S. aureus V8 protease and cyanogen bromide cleavage filled the missing part and completed the primary sequence of bLPL. The NH2 terminus of bLPL was determined to be Asp by sequencing the intact protein with a gas phase sequencer for up to 30 residues, whereas the COOH terminus was identified as Gly through, carboxyl peptidase Y cleavage. The enzyme contains 10 cysteine residues, all of which exist in disulfide linkages. They are formed between Cys29 and Cys42, Cys218 and Cys241, Cys266 and Cys285, Cys277, and Cys280, and Cys420 and Cys440. The sites of N-glycosylation were identified at Asn44 and Asn361. In accordance with a common structural homology of serine-type esterases, -G-X-S-X-G- (Yang, C. Y., Manoogian, D., Pao, Q., Lee, F., Knapp, R. D., Gotto, A. M., Jr., and Pownall, H. J. (1987) J. Biol. Chem., 262, 3086-3191), the active site serine of bLPL was assigned to the serine at position 134. The chymotrypsin nick of bLPL was determined to be between residues 390 and 391. A model of the enzyme is proposed on the basis of our data and available chemical data.  相似文献   

18.
A fusion protein consisting of the TrpE protein and residues 166-211 of the Torpedo acetylcholine receptor alpha 1 subunit was produced in Escherichia coli using a pATH10 expression vector. Residues in the Torpedo sequence were changed by means of oligonucleotide-directed mutagenesis to residues present in snake alpha 1 subunit and rat nerve alpha 3 subunit which do not bind alpha-bungarotoxin. The fusion protein of the Torpedo sequence bound 125I-alpha-bungarotoxin with high affinity (IC50 = 2.5 x 10(-8) M from competition with unlabeled toxin, KD = 2.3 x 10(-8) M from equilibrium saturation binding data). Mutation of three Torpedo residues to snake residues, W184F, K185W, and W187S, had no effect on binding. Conversion of two additional Torpedo residues to snake, T191S and P194L, reduced alpha-bungarotoxin binding to undetectable levels. The P194L mutation alone abolished toxin binding. Mutation of three Torpedo alpha 1 residues to neuronal alpha 3-subunit residues, W187E, Y189K, and T191N, also abolished detectable alpha-bungarotoxin binding. Conversion of Try-189 to Asn which is present in the snake sequence (Y189N) abolished toxin binding. It is concluded that in the sequence of the alpha subunit of Torpedo encompassing Cys-192 and Cys-193, Try-189 and Pro-194 are important determinants of alpha-bungarotoxin binding. Tyr-189 may interact directly with cationic groups or participate in aromatic-aromatic interactions while Pro-194 may be necessary to maintain a conformation conductive to neurotoxin binding.  相似文献   

19.
In the nicotinic acetylcholine receptors (AChRs), the sequence segment surrounding two invariant vicinal cysteinyl residues at positions 192 and 193 of the alpha subunit contains important structural component(s) of the binding site for acetylcholine and high molecular weight cholinergic antagonists, like snake alpha-neurotoxins. At least a second sequence region contributes to the formation of the cholinergic site. Studying the binding of alpha-bungarotoxin and three different monoclonal antibodies, able to compete with alpha-neurotoxins and cholinergic ligands, to a panel of synthetic peptides as representative structural elements of the AChR from Torpedo, we recently identified the sequence segments alpha 181-200 and alpha 55-74 as contributing to form the cholinergic site (Conti-Tronconi et al., 1990). As a first attempt to elucidate the structural requirements for ligand binding to the subsite formed by the sequence alpha 181-200, we have now studied the binding of alpha-bungarotoxin and of antibody WF6 to the synthetic peptide alpha 181-200, and to a panel of peptide analogues differing from the parental sequence alpha 181-200 by substitution of a single amino acid residue. CD spectral analysis of the synthetic peptide analogues indicated that they all have comparable structures in solution, and they can therefore be used to analyze the influence of single amino acid residues on ligand binding. Distinct clusters of amino acid residues, discontinuously positioned along the sequence 181-200, seem to serve as attachment points for the two ligands studied, and the residues necessary for binding of alpha-bungarotoxin are different from those crucial for binding of antibody WF6. In particular, residues at positions 188-190 (VYY) and 192-194 (CCP) were necessary for binding of alpha-bungarotoxin, while residues W187, T191, and Y198 and the three residues at positions 193-195 (CPD) were necessary for binding of WF6. Comparison of the CD spectra of the toxin/peptide complexes, and those obtained for the same peptides and alpha-bungarotoxin in solution, indicates that structural changes of the ligand(s) occur upon binding, with a net increase of the beta-structure component. The cholinergic binding site is therefore a complex surface area, formed by discontinuous clusters of amino acid residues from different sequence regions. Such complex structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody/antigen complexes [reviewed in Davies et al. (1988)]. Within this relatively large structure, cholinergic ligands bind with multiple points of attachment, and ligand-specific patterns of the attachment points exist.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The primary structure of the cytotoxin alpha-sarcin   总被引:2,自引:0,他引:2  
The primary structure of the cytotoxin alpha-sarcin was determined. Eighteen of the 19 tryptic peptides were purified; the other peptide has arginine only. The complete sequence of 17 of the peptides was determined; the sequence of the remaining peptide was determined in part. The sequence of the 39 NH2-terminal residues was obtained by automated Edman degradation. The carboxyl-terminal amino acids were identified after carboxypeptidase treatment. The assignment of the amino acids in the tryptic peptides was confirmed and their alignment established from the sequence of the secondary tryptic peptides obtained after cleavage of citraconylated alpha-sarcin, from the sequence of a 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine peptide, from the sequence of a chymotryptic peptide, and from the sequence of a peptide obtained with Staphylococcus aureus V8 protease. alpha-Sarcin contains 150 amino acid residues; the molecular weight is 16,987. There are disulfide bridges between cysteine residues at positions 6 and 148 and between residues 76 and 132.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号