首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence and Expression of a HSP83 from Arabidopsis thaliana   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

2.
3.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

4.
In this study, we compared the effect of KNK437 (N-formyl-3, 4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat shock and chemical stressor-induced hsp30 gene expression in Xenopus laevis A6 kidney epithelial cells. Previously, KNK437 was shown to inhibit HSE-HSF1 binding activity and heat-induced hsp gene expression. In the present study, Northern and Western blot analysis revealed that pretreatment of A6 cells with KNK437 inhibited hsp30 mRNA and HSP30 and HSP70 protein accumulation induced by chemical stressors including sodium arsenite, cadmium chloride and herbimycin A. In A6 cells subjected to sodium arsenite, cadmium chloride, herbimycin A or a 33 degrees C heat shock treatment, immunocytochemistry and confocal microscopy revealed that HSP30 accumulated primarily in the cytoplasm. However, incubation of A6 cells at 35 degrees C resulted in enhanced HSP30 accumulation in the nucleus. Pre-treatment with 100 microM KNK437 completely inhibited HSP30 accumulation in A6 cells heat shocked at 33 or 35 degrees C as well as cells treated with 10 microM sodium arsenite, 100 microM cadmium chloride or 1 microg/mL herbimycin A. These results show that KNK437 is effective at inhibiting both heat shock- and chemical stress-induced hsp gene expression in amphibian cells.  相似文献   

5.
Heat shock proteins (HSP) can protect organisms and cells from thermal damage. In this study, we cloned the full length cDNA encoding the HSP83 protein (the homologue of HSP90) of Tribolium castaneum (red flour beetle). The isolated cDNA contains the full coding sequence, a partial 5′ untranslated region of 55 bp and the complete 3′ untranslated region. We found the hsp83 gene is located on chromosome 5 of the T. castaneum genome. The predicted HSP83 protein sequence has a high similarity (on average 86.77%) with that of other insect species. The expression of the hsp83 gene in the whole body and in the ovary could be induced with heat stress (40°C for 1 h) in newly hatched (within 3 h post emergence) and mature (10 days post emergence) beetles. Under normal conditions, the hsp83 expression in the ovary is about 3-fold higher than in the whole body at both stages. No significant difference in hsp83 expression was observed between the two ovarian developmental stages regardless if the beetles were treated with heat shock or not. The expression of the HSP83 protein in the whole body could also be induced with heat stress in newly hatched and mature beetles. However, in the ovary, HSP83 was only expressed in the follicle cells of mature beetles and not in newly hatched beetles, regardless if the beetles were treated with heat shock or not. Furthermore, the females were not able to produce mature oocytes after knock-down of the hsp83 expression by injecting dsRNA. These results suggest that the HSP83 protein is involved in protection against heat stress and could be involved in oogenesis during ovarian maturation of T. castaneum.  相似文献   

6.
Felsheim RF  Das A 《Plant physiology》1992,100(4):1764-1771
Four cDNA clones representing mRNAs whose levels were affected by a photoperiod that induces flowering in Pharbitis nil were isolated by a differential hybridization screening procedure. The level of mRNAs represented by three clones (12L, 15L, and 17L) increased following a photoperiod that induces flowering and that represented by the fourth clone (clone 27) increased under conditions in which flowering was inhibited. DNA sequence analysis showed that one cDNA, clone 17L, is homologous to members of the 83- to 90-kD heat-shock protein (hsp) gene family. The corresponding gene, hsp83A, was isolated and its DNA sequence was determined. hsp83A encodes a protein that exhibits 70% amino acid identity with Drosophila melanogaster HSP83. The P. nil hsp83A gene contains two introns within the coding region. hsp83A mRNA was not detectable in cotyledons of plants grown in continuous light, but its level increased transiently following a 14-h dark period and reached a maximum 2 h after the lights were turned on. A dramatic increase in the level of hsp83A mRNA was also found 2 h after an end-of-day dark treatment. Genomic Southern blot analysis demonstrated that the P. nil hsp83-90 gene family consists of at least six members, one of which appears to be constitutively expressed in the light.  相似文献   

7.
Heat shock protein genes, hsp90, hsc70, and hsp19.5, were cloned and sequenced from the diamondback moth, Plutella xylostella (L.) by RT-PCR and RACE method. The cDNA sequence analysis of hsp90 and hsp19.5 revealed open reading frames (ORFs) of 2,151 and 522 bp in length, which encode proteins with calculated molecular weights of 82.4 and 19.5 kDa, respectively. Analysis of cDNA from hsc70 revealed an ORF of 1,878 bp coding a protein with a calculated molecular weight of 69.3 kDa. Furthermore, the analysis of genomic DNA from hsc70 confirmed the presence of introns while no introns were apparent in hsp90 and hsp19.5. Southern blot analysis suggested the presence of multiple copies of each gene family in the DBM genome. Detectable expression of hsp19.5 was observed at the pupal stage while expression of hsp90 and hsc70 was detected at both pupal and adult stages. At adult stage, females showed a higher expression of hsp90 and hsc70 than males. An increased expression was observed in all three genes after exposure to a high temperature in both sexes. These results suggest that in addition to a heat shock response, these HSP genes might be involved in other functions during the course of development in DBM.  相似文献   

8.
9.
Heat shock protein (HSP) genes, hsp90, hsp70, hsc70, hsp20.7, and hsp19.7, were cloned and sequenced from cultured cells of the cabbage armyworm, Mamestra brassicae. Analyses of the cDNA sequences revealed open reading frames of 2,151, 1,914, 1,962, 540, and 465 bp in lengths, which encode proteins with calculated molecular weights of 82.5, 69.9, 71.6, 20.7, and 19.7 kDa, respectively. An increased expression was observed in all five genes after exposure to a high temperature. The induction of gene expression was not observed during a low temperature exposure, but was observed when the cells were recovered at ambient temperature. Expression of hsp90, hsp70, and hsp20.7 was induced after exposure to 2 microM of cadmium, while the minimum cadmium concentration for induction of hsp19.7 was 5 microM. The induction of hsp90 expression was somewhat masked by basal levels of expression. Only hsp20.7 expression was induced by exposure to copper. Lead did not induce expression of any of the HSP genes tested. Cadmium-induced up-regulation of hsp70 expression was lasted longer than heat-induced one. These results suggest that hsp70 could be useful to assess the cellular distress or injury induced by cadmium.  相似文献   

10.
11.
12.
13.
In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1–10 µM sodium arsenite at a mild heat shock temperature of 30 °C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 µM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 °C with larger responses at 28 and 30 °C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 µM) and heat shock (30 °C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 °C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.  相似文献   

14.
Characterization of the mouse 84-kD heat shock protein gene family   总被引:2,自引:0,他引:2  
  相似文献   

15.
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.  相似文献   

16.
In previous studies, the only small HSPs that have been studied in Xenopus laevis are members of the HSP30 family. We now report the analysis of Xenopus HSP27, a homolog of the human small HSP, HSP27. To date the presence of both hsp30 and hsp27 genes has been demonstrated only in minnow and chicken. Xenopus HSP27 cDNA encodes a 213 aa protein that contains an alpha-crystallin domain as well as a polar C-terminal extension. Xenopus HSP27 shares 71% identity with chicken HSP24 but only 19% identity with Xenopus HSP30C. Northern blot analysis revealed that Xenopus HSP27 gene expression was developmentally regulated. Constitutive and heat shock-induced hsp27 mRNA accumulation was first detectable at the early tailbud stage while HSP27 protein was detected at the tadpole stage. Furthermore, hsp27 mRNA was enriched in selected tissues under both control and heat shock conditions. Whole mount in situ hybridization analysis detected the presence of this message in the lens vesicle, heart, head, somites, and tail region. Purified recombinant HSP27 protein displayed molecular chaperone properties since it had the ability to inhibit heat-induced aggregation of target proteins including citrate synthase, malate dehydrogenase and luciferase. Thus, Xenopus HSP27, like HSP30, is a developmentally-regulated heat-inducible molecular chaperone.  相似文献   

17.
The involvement of calcium and different calmodulin isoforms (Ca2+-CaM) in heat shock (HS) signal transduction in Arabidopsis ( Arabidopsis thaliana ) was investigated. Using transgenic Arabidopsis plants which have the AtHsp18.2 promoter/GUS fusion gene, it was found that the level of β -glucuronidase (GUS) activity was up-regulated by the addition of CaCl2 and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl3 and verapamil, or the CaM antagonists N -(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7), chlorpromazine (CPZ) and trifluoperazine (TFP). CaCl2 not only increased the GUS activity after HS, but also up-regulated the GUS activity under non-HS conditions. These results provide additional support for the involvement of the Ca2+-CaM signalling system in HSP gene expression. The expression of nine CaM genes (AtCaM1–9) from Arabidopsis was differentially regulated by HS at 37 °C. The expression of AtCaM3 and AtCaM7 genes increased during HS. The temporal expression of the AtCaM3, AtCaM7 and hsp18.2 genes demonstrated that up-regulation of AtCaM3 expression occurred earlier than that of AtCaM7 or hsp18.2 .  相似文献   

18.
19.
Hsp104 is required for tolerance to many forms of stress.   总被引:48,自引:2,他引:46       下载免费PDF全文
Heat-shock proteins (hsps) are induced by many types of stress. In Saccharomyces cerevisiae, a mutation in the HSP104 gene, a member of the highly conserved hsp100 gene family, reduces the ability of log-phase fermenting cells to withstand high temperatures after mild, conditioning pretreatments. Here, we examine the expression of hsp104 and its importance for survival under many different conditions. Hsp104 is expressed at a higher level in respiring cells than in fermenting cells and is required for the unusually high basal thermotolerance of respiring cells. Its expression in stationary phase cells and spores is crucial for the naturally high thermotolerance of these cell types and for their long-term viability at low temperatures. The protein is of critical importance in tolerance to ethanol and of moderate importance in tolerance to sodium arsenite. Thus, the hsp104 mutation establishes the validity of a long-standing hypothesis in the heat-shock field, namely, that hsps have broadly protective functions. Further, that a single protein is responsible for tolerance to heat, ethanol, arsenite and long-term storage in the cold indicates that the underlying causes of lethality are similar in an extraordinary variety of circumstances. Finally, the protein is of little or no importance in tolerance to copper and cadmium, suggesting that the lethal lesions produced by these agents are fundamentally different from those produced by heat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号