首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and structure of the megagametophyte of Anarthria (Anarthriaceae), Aphclia, and Centrolepis (Centrolepidaceae) are described. Anarthriaceae has tenuinucellate ovules and the Polygonum type of megagametophyte development, both characters typical of the Poales. However, it lacks the anticlinally elongated nucellar epidermis and numerous large starch bodies observed in the megagametophyte of Centrolepidaceae, both characters also present in Restionaceae. This relatively generalized megagametophyte structure is consistent with data from the chloroplast genome, which suggest that Anarthriaceae are not as closely related to Restionaceae as previously assumed. New data from the megagametophyte are analyzed cladistically together with other available information on the poalean families. The results show that there are two possible positions for Anarthriaceae: either as sister to Poaceae. Joinvilleaceae, Restionaceae, Ecdeiocoleaceae, and Restionaceae, or as sister to only the latter three families. The new data also allow a critical reevaluation of the phylogenetic position of Centrolepidaceae, which is either basal to the poalean clade (based on microgametophyte data), or embedded in the Restionaceae (based on anther structure and megagametophyte data).  相似文献   

2.
A phylogenetic analysis of the Poales was conducted to assess relationships among Poaceae and allied families. The analysis included 40 taxa, representing all families of the Poales as circumscribed by the Angiosperm Phylogeny Group (APG), plus five of the six unplaced Commelinid families in the APG system. The data matrix included 98 informative characters representing variation in morphology and chloroplast genome structure (including three inversions in the chloroplast genome), and 563 informative characters derived from rbcL and atpA nucleotide sequences. Ecdeiocolea has the 6-kilobase (kb) chloroplast genome inversion previously reported in Joinvillea and Poaceae, and like Joinvillea it lacks the trnT inversion that occurs in grasses. Analysis of the morphological data places Poaceae in an unresolved relationship relative to several other taxa, including Joinvillea and Ecdeiocolea, while analysis of the molecular and combined data resolves Ecdeiocolea as sister of Poaceae, with Joinvillea the sister of this group. Although the 6-kb and trnT inversions are non-homoplasious in the phylogenies obtained in this study, the 28-kb inversion is optimized as having originated twice (once in Restionaceae and another time in the most recent common ancestor of Ecdeiocolea, Joinvillea, and the grasses); an alternative interpretation is that it arose once and was later lost in Anarthria. Ecdeiocolea shares with Poaceae the presence of operculate, annulate pollen that lacks scrobiculi, and a dry, indehiscent fruit.  相似文献   

3.
The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages.  相似文献   

4.
The three-dimensional structure of the endothecial thickenings in the anthers was investigated in 87 species from 70 genera, chosen to provide representative coverage of the families Cyperaceae, Restionaceae, Anarthriaceae, Ecdeiocoleaceae, Centrolepidaceae, Joinvilleaceae, Flagellariaceae, Poaceae, Xyridaceae, and Eriocaulaceae. There is complex variation in the patterns of endothecial thickening: the Eriocaulaceae, Flagellariaceae, and most Poaceae have thickenings with a complete baseplate; the Cyperaceae and most of the Restionaceae are characterized by helical thickenings; some genera in the Bambusoideae have annular thickenings; and U-shaped thickenings occur in the Xyridaceae and Eriocaulaceae and in some Poaceae and Restionaceae. Joinvillea and Ecdeiocolea have unique thickening types. Endothecial characters were subjected to cladistic analysis. Including endothecial characters in an existing cladogram of the group indicates that there is no single, well-corroborated cladogram available for the Poales/Restionales.  相似文献   

5.
Phylogenetic relationships of the five families of the order Commelinales remain an area of deep uncertainty in higher-level monocot systematics, despite intensive morphological and anatomical study. To test the monophyly of the Commelinales and the subclass Commelinidae, evaluate their relationships, and analyze evolutionary trends in their morphology, ecology, and biogeography, we conducted parsimony analyses on 95 rbcL sequences representing 17 taxa of Commelinales, 16 taxa of other Commelinidae, and 63 taxa from Arecidae, Liliidae, and Zingiberidae. Commelinales is polyphyletic and Commelinidae paraphyletic, with Eriocaulaceae and Xyridaceae sister to Poaceae and its relatives, Rapateaceae sister to Bromeliaceae and Mayacaceae, and Commelinaceae sister to Philydrales and allies. Thurnia is sister to Prionium at the base of Cyperaceae-Juncaceae; only 1 of Cronquist's multifamily commelinoid orders is diagnosed as monophyletic. We propose a revised Commelinidae, incorporating 4 revised superorders (Bromelianae, Commelinanae, Dasypogonanae, Arecanae) and 10 orders ((Poales, Eriocaulales, Cyperales, Typhales, Bromeliales), (Commelinales, Philydrales, Zingiberales), (Dasypogonales), (Arecales)). Morphological and anatomical characters used to define the original Commelinales and Commelinidae appear to be plesiomorphic or to reflect convergence or recurrent mutation; several characters supporting our revised classification are anatomical traits that seem relatively insulated from environmental selection pressures. The Commelinidae distal to the Arecales arose in South America, with amphiatlantic Bromeliaceae-Mayacaceae-Rapateaceae originating in the Guayana Shield. Ecological diversification involved the repeated invasion of shady, infertile, or arid microsites. The numbers of species in families of the revised Commelinidae are related partly to the extent of adaptive radiation in those families, but seem more strongly related to nonadaptive features promoting speciation, such as restricted seed dispersal (especially in forest interior groups with fleshy fruits), polyploidy, aneuploidy, and apomixis. Species diversity is unrelated to the rate/amount of rbcL sequence evolution.  相似文献   

6.
(1→3),(1→4)-?-Glucans had previously been detected in nonlignified cell wall preparations of only the Poaceae and five other families in the graminoid clade of the Poales (s.l.). Cell walls of vegetative organs of 12 species in nine families of the Poales (s.l.) were examined by immunogold labeling using a monoclonal antibody to (1→3),(1→4)-?-glucans. Three types of wall-labeling patterns were identified depending on the density of labeling of the nonlignified walls of epidermal and parenchyma cells and the lignified walls of sclerenchyma fibers and xylem tracheary elements: type 1 in Poaceae and Flagellariaceae, type 2 in Restionaceae and Xyridaceae, and type 3 in Cyperaceae and Juncaceae. Type 1 had the heaviest labeling of nonlignified walls and type 2 the heaviest labeling of lignified walls. Type 3 had the least wall labeling, with only very light labeling of nonlignified and lignified walls. No labeling was found over walls of Typhaceae, Sparganiaceae, or Bromeliaceae. The results are discussed in relation to Poales phylogeny.  相似文献   

7.
Previous studies of the small Southern Hemisphere family Atherospermataceae have drawn contradictory conclusions regarding the number of transantarctic disjunctions and role of transoceanic dispersal in its evolution. Clarification of intergeneric relationships is critical to resolving (1) whether the two Chilean species, Laurelia sempervirens and Laureliopsis philippiana, are related to different Austral-Pacific species, implying two transantarctic disjunctions as suggested by morphology; (2) where the group is likely to have originated; and (3) whether observed disjunctions reflect the breakup of Gondwana. We analyzed chloroplast DNA sequences from six regions (the rbcL gene, the rpl16 intron, and the trnL-trnF, trnT-trnL, psbA-trnH, and atpB-rbcL spacer regions; for all six regions, 4,372 bp) for all genera and most species of Atherospermataceae, using parsimony and maximum likelihood (ML). The family's sister group, the Chilean endemic Gomortega nitida (Gomortegaceae), was used to root the tree. Parsimony and ML yielded identical single best trees that contain three well-supported clades (> or = 75% bootstrap): Daphnandra and Doryphora from south-eastern Australia; Atherosperma and Nemuaron from Australia-Tasmania and New Caledonia, respectively; and Laurelia novac-zelandiac and Laureliopsis philippiana from New Zealand and Chile, respectively. The second Chilean species, Laurelia sempervirens, is sister to this last clade. Likelihood ratio testing did not reject the molecular clock assumption for the rbcL data, which can therefore be used for divergence time estimates. The atherosperm fossil record, which goes back to the Upper Cretaceous, includes pollen, wood, and leaf fossils from Europe, Africa, South America, Antarctica, New Zealand, and Tasmania. Calibration of rbcL substitution rates with the fossils suggests an initial diversification of the family at 100-140 million years ago (MYA), probably in West Gondwana, early entry into Antarctica, and long-distance dispersal to New Zealand and New Caledonia at 50-30 MYA by the ancestors of L. novae-zelandiae and Nemuaron.  相似文献   

8.
Overlapping genes occur widely in microorganisms and in some plastid genomes, but unique properties are observed when such genes span the boundaries between single-copy and repeat regions. The termini of ndhH and ndhF, situated near opposite ends of the small single-copy region (SSC) in the plastid genomes of grasses (Poaceae), have migrated repeatedly into and out of the adjacent inverted-repeat regions (IR). The two genes are transcribed in the same direction, and the 5' terminus of ndhH extends into the IR in some species, while the 3' terminus of ndhF extends into the IR in others. When both genes extend into the IR, portions of the genes overlap and are encoded by the same nucleotide positions. Fine-scale mapping of the SSC-IR junctions across a sample of 92 grasses and outgroups, integrated into a phylogenetic analysis, indicates that the earliest grasses resembled the related taxa Joinvillea (Joinvilleaceae) and Ecdeiocolea (Ecdeiocoleaceae), with ca. 180 nucleotides of ndhH extending into the IR, and with ndhF confined to the SSC. This structure is maintained in early-diverging grass lineages and in most species of the BEP clade. In the PACMAD clade, ndhH lies completely or nearly completely within the SSC, and ca. 20 nucleotides of ndhF extend into the IR. The nucleotide substitution rate has increased in the PACMAD clade in the portion of ndhH that has migrated into the SSC.  相似文献   

9.
Due to the immense ecological and economic significance of grasses, their highly characteristic long–short epidermal patterning and associated silica phytoliths represent significant diagnostic markers in studies of ancient climate change and agriculture. We explore the link between epidermal cell patterning and phytolith development and review the evolutionary history of phytoliths in the context of recent well-resolved phylogenetic analyses of grasses and allied Poales, focusing on early-divergent grasses and the subfamilies that constitute the BEP group (the bamboos and their allies). Dimorphic epidermal patterning is a common feature of Poaceae and the related family Joinvilleaceae, where phytoliths are located primarily in the short cells. However, Joinvillea lacks the short-cell pairs that occur in many grasses. The costal rows of phytoliths that characterize some grasses could represent loss of long–short cell patterning over the veins. Unlobed phytoliths probably represent the ancestral condition in grasses, though bilobate phytoliths evolved at an early stage. Either transverse-unlobed or transverse-bilobate phytoliths predominate in the early-divergent lineages, whereas axial-bilobates (or polylobates) primarily characterize the PACMAD clade and the BEP subfamily Pooideae.  相似文献   

10.
Wahlenbergia is a largely southern hemisphere genus of at least 260 species; within Campanulaceae only Campanula is larger. This first phylogeny of Wahlenbergia was reconstructed using about 20% of the 260 species in the genus based on the nuclear ribosomal ITS marker and the chloroplast trnL-F marker with samples from South Africa, Europe, Australia and New Zealand. Wahlenbergia was confirmed to be non-monophyletic, though most of the species form a clade. Our tree topology and date estimates indicate that Wahlenbergia diverged in South Africa about 29.6 mya, then dispersed to Australasia about 4.8 mya, thus indicating the radiation of Wahlenbergia occurred relatively recently. Radiations occurred in both of these main centres; there are currently about 170 species in South Africa and 45 species and subspecies in Australasia. New Zealand species comprise two clades, both rooted within the Australasian clade. We thus propose two dispersals from Australia to New Zealand, one leading to a radiation of species with the rhizomatous herbaceous growth form ca. 1.6 mya, and the other leading to a radiation of species with the radicate growth form 0.7 mya. Dispersals from Australia to New Zealand match the expected direction, following the west wind drift and ocean currents. The herbaceous growth form was shown to be ancestral for the genus as a whole, and polyploidy has been a mechanism of the evolution of the genus in Australasia.  相似文献   

11.
Joinvilleaceae is a family of tropical grass-like monocots that comprises only the genus Joinvillea. Previous studies have placed Joinvilleaceae in close phylogenetic proximity to the well-studied grass family. A full plastome sequence was determined and characterized for J. ascendens. The plastome was sequenced with next generation methods, fully assembled de novo and annotated. The assembly revealed two novel inversions specific to the Joinvilleaceae lineage and at least one novel plastid inversion in the Joinvilleaceae-Poaceae lineage. Two previously documented inversions in the Joinvilleaceae-Poaceae lineage and one previously documented inversion in the Poaceae lineage were also verified. Inversion events were identified visually and verified computationally by simulation mutations. Additionally, the loss and subsequent degradation of the accD gene in order Poales was explored extensively in Poaceae and J. ascendens. The two novel inversions along with changes in gene composition between families better delimited lineages in the Poales. The presence of large inversions and subsequent reversals in this small family suggested a high potential for large-scale rearrangements to occur in plastid genomes.  相似文献   

12.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

13.
Four major austral continental distribution patterns are evident in pteridophytes. Twenty-two species are completely circum-Antarctic. Another 39 species are partially circum-Antarctic, occurring in Australasia (Australia and New Zealand) and Africa (including Madagascar) but not South America, while 29 are in Africa and South America but not Australasia, and 13 are in South America and Australasia but not Africa. Two hypotheses are considered as explanations for the patterns: continental drift following the breakup of Gondwana and long-distance dispersal. Fossil evidence indicates that the majority of pteridophyte families involved appeared after the southern continents had drifted apart, so long-distance dispersal is likely to explain the distribution of species in these families on now widely separated continents. For those families extant before the break-up, there is no indication in the fossil record that the species involved were present in Gondwana. Aspects of the ecology of the species that are partly or completely circum-Antarctic indicate that long-distance dispersal, rather than continental drift, is a likely explanation for the patterns.  相似文献   

14.
Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.  相似文献   

15.
The modern geographic distribution of the spider family Sicariidae is consistent with an evolutionary origin on Western Gondwana. Both sicariid genera, Loxosceles and Sicarius are diverse in Africa and South/Central America. Loxosceles are also diverse in North America and the West Indies, and have species described from Mediterranean Europe and China. We tested vicariance hypotheses using molecular phylogenetics and molecular dating analyses of 28S, COI, 16S, and NADHI sequences. We recover reciprocal monophyly of African and South American Sicarius, paraphyletic Southern African Loxosceles and monophyletic New World Loxosceles within which an Old World species group that includes L. rufescens is derived. These patterns are consistent with a sicariid common ancestor on Western Gondwana. North American Loxosceles are monophyletic, sister to Caribbean taxa, and resolved in a larger clade with South American Loxosceles. With fossil data this pattern is consistent with colonization of North America via a land bridge predating the modern Isthmus of Panama.  相似文献   

16.
Evolution, biogeography, and patterns of diversification in passerine birds   总被引:6,自引:0,他引:6  
This paper summarizes and discusses the many new insights into passerine evolution gained from an increased general interest in avian evolution among biologists, and particularly from the extensive use of DNA sequence data in phylogenetic reconstruction. The sister group relationship between the New Zealand rifleman and all other passerines, indicates the importance of the former southern supercontinent Gondwana in the earliest evolution of this group. Following the break-up of Gondwana, the ancestors of other major passerine groups became isolated in Australia (oscines), South America (New World suboscines), and possibly, the then connected Kerguelen Plateau/India/Madagascar tectonic plates (Old World suboscines). The oscines underwent a significant radiation in the Australo-Papuan region and only a few oscine lineages have spread further than to the nearby Southeast Asia. A remarkable exception is the ancestor to the vast Passerida radiation, which now comprises 35% of all bird species. This group obviously benefitted greatly from the increased diversity in plant seed size and morphology during the Tertiary. The lyrebirds (and possibly scrub-birds) constitute the sister group to all other oscines, which renders "Corvida" ( sensu Sibley and Ahlquist 1990) paraphyletic. Sequence data suggests that Passerida, the other clade of oscines postulated based on the results of DNA–DNA hybridizations, is monophyletic, and that the rockfowl and rock-jumpers are the most basal members of this clade. The suboscines in the Old World (Eurylamides) and the New World (Tyrannides), respectively, are sister groups. A provisional, working classification of the passerines is presented based on the increased understanding of the major patterns of passerine evolution.  相似文献   

17.
The Lanceocercata are a clade of stick insects (Phasmatodea) that have undergone an impressive evolutionary radiation in Australia, New Caledonia, the Mascarene Islands and areas of the Pacific. Previous research showed that this clade also contained at least two of the nine New Zealand stick insect genera. We have constructed a phylogeny of the Lanceocercata using 2277 bp of mitochondrial and nuclear DNA sequence data to determine whether all nine New Zealand genera are indeed Lanceocercata and whether the New Zealand fauna is monophyletic. DNA sequence data were obtained from mitochondrial cytochrome oxidase subunits I and II and the nuclear large subunit ribosomal RNA and histone subunit 3. These data were subjected to Bayesian phylogenetic inference under a partitioned model and maximum parsimony. The resulting trees show that all the New Zealand genera are nested within a large New Caledonian radiation. The New Zealand genera do not form a monophyletic group, with the genus Spinotectarchus Salmon forming an independent lineage from the remaining eight genera. We analysed Lanceocercata apomorphies to confirm the molecular placement of the New Zealand genera and to identify characters that confirm the polyphyly of the fauna. Molecular dating analyses under a relaxed clock coupled with a Bayesian extension to dispersal‐vicariance analysis was used to reconstruct the biogeographical history for the Lanceocercata. These analyses show that Lanceocercata and their sister group, the Stephanacridini, probably diverged from their South American relatives, the Cladomorphinae, as a result of the separation of Australia, Antarctica and South America. The radiation of the New Caledonian and New Zealand clade began 41.06 million years ago (mya, 29.05–55.40 mya), which corresponds to a period of uplift in New Caledonia. The main New Zealand lineage and Spinotectarchus split from their New Caledonian sister groups 33.72 (23.9–45.62 mya) and 29.9 mya (19.79–41.16 mya) and began to radiate during the late Oligocene and early Miocene, probably in response to a reduction in land area and subsequent uplift in the late Oligocene and early Miocene. We discuss briefly shared host plant patterns between New Zealand and New Caledonia. Because Acrophylla sensu Brock & Hasenpusch is polyphyletic, we have removed Vetilia Stål from synonymy with Acrophylla Gray.  相似文献   

18.
Aim To test the hypothesis that continental drift drives diversification of organisms through vicariance, we selected a group of primitive arachnids which originated before the break‐up of Pangaea and currently inhabits all major landmasses with the exception of Antarctica, but lacks the ability to disperse across oceanic barriers. Location Major continental temperate to tropical landmasses (North America, South America, Eurasia, Africa, Australia) and continental islands (Bioko, Borneo, Japan, Java, New Caledonia, New Guinea, New Zealand, Sri Lanka, Sulawesi, Sumatra). Methods Five kb of sequence data from five gene regions for more than 100 cyphophthalmid exemplars were analysed phylogenetically using different methods, including direct optimization under parsimony and maximum likelihood under a broad set of analytical parameters. We also used geological calibration points to estimate gross phylogenetic time divergences. Results Our analyses show that all families except the Laurasian Sironidae are monophyletic and adhere to clear biogeographical patterns. Pettalidae is restricted to temperate Gondwana, Neogoveidae to tropical Gondwana, Stylocellidae to Southeast Asia, and Troglosironidae to New Caledonia. Relationships between the families inhabiting these landmasses indicate that New Caledonia is related to tropical Gondwana instead of to the Australian portion of temperate Gondwana. The results also concur with a Gondwanan origin of Florida, as supported by modern geological data. Main conclusions By studying a group of organisms with not only an ancient origin, low vagility and restricted habitats, but also a present global distribution, we have been able to test biogeographical hypotheses at a scale rarely attempted. Our results strongly support the presence of a circum‐Antarctic clade of formerly temperate Gondwanan species, a clade restricted to tropical Gondwana and a Southeast Asian clade that originated from a series of early Gondwanan terranes that rifted off northwards from the Devonian to the Triassic and accreted to tropical Laurasia. The relationships among the Laurasian species remain more obscure.  相似文献   

19.
Late Permian terrestrial faunas of South Africa and Russia are dominated taxonomically and ecologically by therapsid synapsids. On the basis of a single specimen from the Upper Permian of South Africa, the varanopseid Elliotsmithia longiceps is the sole basal synapsid ('pelycosaur') known from Gondwana. Recent fieldwork in the Upper Permian of South Africa has produced a second varanopseid specimen that is referrable to Elliotsmithia . Data from both this specimen and the holotype suggest that Elliotsmithia forms a clade with Mycterosaurus from the Lower Permian of North America and Mesenosaurus from the Upper Permian of Eastern Europe. That postulate is supported by the three most parsimonious trees discovered in a new analysis of varanopseid phylogeny. However, the available data cannot resolve the interrelationships of these three genera. The new phylogenetic results contrast with earlier work identifying Elliotsmithia as the basal member of a clade that includes the North American taxa Aerosaurus , Varanops , and Varanodon . The new trees reduce the stratigraphic debt required by the latter scenario, and the one with the least stratigraphic debt identifies Elliotsmithia and Mesenosaurus as sister taxa. Two new taxa are erected, Mycterosaurinae and Varanodontinae, for the two varanopseid subclades.  相似文献   

20.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号