首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic linkage map of tetraploid wheat was constructed based on a cross between durum wheat [Triticum turgidum ssp. durum (Desf.) MacKey] cultivar Langdon and wild emmer wheat [T. turgidum ssp. dicoccoides (K?rn.) Thell.] accession G18-16. One hundred and fifty-two single-seed descent derived F(6) recombinant inbred lines (RILs) were analyzed with a total of 690 loci, including 197 microsatellite and 493 DArT markers. Linkage analysis defined 14 linkage groups. Most markers were mapped to the B-genome (60%), with an average of 57 markers per chromosome and the remaining 40% mapped to the A-genome, with an average of 39 markers per chromosome. To construct a stabilized (skeleton) map, markers interfering with map stability were removed. The skeleton map consisted of 307 markers with a total length of 2,317 cM and average distance of 7.5 cM between adjacent markers. The length of individual chromosomes ranged between 112 cM for chromosome 4B to 217 cM for chromosome 3B. A fraction (30.1%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1A, 1BL, 2BS, 3B, and 4B. DArT markers showed high proportion of clustering, which may be indicative of gene-rich regions. Three hundred and fifty-two new DArT markers were mapped for the first time on the current map. This map provides a useful groundwork for further genetic analyses of important quantitative traits, positional cloning, and marker-assisted selection, as well as for genome comparative genomics and genome organization studies in wheat and other cereals.  相似文献   

2.
Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.  相似文献   

3.
4.
Grain yield and associated agronomic traits are important factors in wheat (Triticum aestivum L.) improvement. Knowledge regarding the number, genomic location, and effect of quantitative trait loci (QTL) would facilitate marker-assisted selection and the development of cultivars with desirable characteristics. Our objectives were to identify QTLs directly and indirectly affecting grain yield expression. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese facultative wheat Ning7840 and the US soft red winter wheat Clark. Phenotypic data were collected for 15 yield and other agronomic traits in the RILs and parental lines from three locations in Oklahoma from 2001 to 2003. Twenty-nine linkage groups, consisting of 363 AFLP and 47 SSR markers, were identified. Using composite interval mapping (CIM) analysis, 10, 16, 30, and 14 QTLs were detected for yield, yield components, plant adaptation (shattering and lodging resistance, heading date, and plant height), and spike morphology traits, respectively. The QTL effects ranged from 7 to 23%. Marker alleles from Clark were associated with a positive effect for the majority of QTLs for yield and yield components, but gene dispersion was the rule rather than the exception for this RIL population. Often, QTLs were detected in proximal positions for different traits. Consistent, co-localized QTLs were identified in linkage groups 1AL, 1B, 4B, 5A, 6A, and 7A, and less consistent but unique QTLs were identified on 2BL, 2BS, 2DL, and 6B. Results of this study provide a benchmark for future efforts on QTL identification for yield traits.  相似文献   

5.
Zhang L  Wang J  Zhou R  Jia J 《遗传学报》2011,38(8):373-378
Crossability between wheat and rye is an important trait for wheat improvement.No quantitative trait loci (QTLs) were detected from wheat ancestors previously.The objectives of this study were to dissect the QTLs for crossability using 111 introgression lines (ILs) derived from synthetic hexaploid wheat.A total of 1275 SSR markers were screened for polymorphism between the two parents,and 552 markers of them displayed polymorphism,of which 64 were selected for genotyping the 111 BC5F6 ILs.Field trials were performed in a Latinized α-lattice design in Luoyang and Jiaozuo of Henan Province of China in 2007-2008 and 2008-2009 cropping seasons.One-way ANOVA and interval mapping (IM) analysis were used to detect QTL for crossability between wheat and rye.A total of 13 putative QTLs were detected.Five of them,QCa.caas.1A,QCa.caas.2D,QCa.caas.4B,QCa.caas.5B and QCa.caas.6A,were detected in both trials and three of them,QCa.caas.2D,QCa.caas.4B and QCa.caas.6A,were novel.The positive effect allele of the four QTLs came from the donor parent Am3 except QCa.caas.6A that came from the recurrent parent Laizhou953.ILs with both higher positive effect alleles and favorable agronomic traits developed in present study are elite germplasm for wide crossing in wheat.Results from the current study suggest that wheat ancestors can be rich in new sources of crossability genes.  相似文献   

6.
Lower market prices and environmental concerns now orientate wheat (Triticum aestivum L.) breeding programs towards low input agricultural practices, and more particularly low nitrogen (N) input management. Such programs require knowledge of the genetic determination of plant reaction to N deficiency. Our aim was to characterize the genetic basis of N use efficiency and genotype × N interactions. The detection of QTL for grain yield, grain protein yield and their components was performed on a mapping population of 222 doubled haploid lines (DH), obtained from the cross between an N stress tolerant variety and an N stress sensitive variety. Experiments on the population were carried out in seven different environments, and in each case under high (N+) and low (N) N supplies. In total, 233 QTL were detected for traits measured in each combination of environment and N supply, for “global” interaction variables (N+–N and N/N+), for sensitivity to N stress and for performance under N-limited conditions which were assessed using factorial regression parameters. The 233 QTL were detected on the whole genome and clustered into 82 genome regions. The dwarfing gene (Rht-B1), the photoperiod sensitivity gene (Ppd-D1) and the awns inhibitor gene (B1) coincided with regions that contained the highest numbers of QTL. Non-interactive QTL were detected on linkage groups 3D, 4B, 5A1 and 7B2. Interactive QTL were revealed by interaction or factorial regression variables (2D2, 3D, 5A1, 5D, 6A, 6B, 7B2) or by both variables (1B, 2A1, 2A2, 2D1, 4B, 5A2, 5B). The usefulness of QTL meta-analysis and factorial regression to study QTL × N interactions and the impact of Rht-B1, Ppd-D1 and B1, are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Key message

Water-soluble carbohydrate accumulation can be selected in wheat breeding programs with consideration of genetic × environmental interactions and relationships with other important characteristics such as relative maturity and nitrogen concentration, although the correlation between WSC traits and grain yield is low and inconsistent.

Abstract

The potential to increase the genetic capacity for water-soluble carbohydrate (WSC) accumulation is an opportunity to improve the drought tolerance capability of rainfed wheat varieties, particularly in environments where terminal drought is a significant constraint to wheat production. A population of elite breeding germplasm was characterized to investigate the potential for selection of improved WSC concentration and total amount in water deficit and well-watered environments. Accumulation of WSC involves complex interactions with other traits and the environment. For both WSC concentration (WSCC) and total WSC per area (WSCA), strong genotype × environment interactions were reflected in the clear grouping of experiments into well-watered and water deficit environment clusters. Genetic correlations between experiments were high within clusters. Heritability for WSCC was larger than for WSCA, and significant associations were observed in both well-watered and water deficit experiment clusters between the WSC traits and nitrogen concentration, tillering, grains per m2, and grain size. However, correlations between grain yield and WSCC or WSCA were weak and variable, suggesting that selection for these traits is not a better strategy for improving yield under drought than direct selection for yield.
  相似文献   

8.
Although aphids are among the most injurious of all agronomic insect pests, much remains unknown about how their feeding alters plant physiology. Two experiments were conducted to examine the physiological responses of wheat, Triticum aestivum L. and barley, Hordeum vulgare L. to injury by Diuraphis noxia (Mordvilko) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Gas-exchange parameters, chlorophyll fluorescence, and chlorophyll content were examined at 3, 6, and 9 days post-infestation on control and aphid (D. noxia and R. padi) infested treatments. In general, chlorophyll content and chlorophyll fluorescence parameters (non-variable minimal fluorescence, maximal fluorescence, and variable fluorescence) were not significantly affected by either aphid species. Photochemical and non-photochemical quenching coefficients were significantly impacted by both aphid species, suggesting that aphid feeding may influence the photoprotective xanthophyll cycle altering the thylakoid membrane pH gradient. Feeding by both aphid species resulted in an increase in electron transport rate, but at different time periods. Wheat plants infested with D. noxia had accelerated declines in photosynthetic capacity when compared to R. padi-infested and control plants. These plants exhibited decreased values for Amax, which was accompanied by decreased values for Vcmax and Jmax Neither aphid species negatively affected the photosynthetic capacity of the barley plants until day 9. At this time, aphid-infested plants had decreased values for Amax which was accompanied by decreased values in Jmax. Although R. padi feeding does not typically result in visual damage symptoms as previously demonstrated, clearly this aphid does have an impact on the gas-exchange and chlorophyll fluorescence of its host plants. Handling editor: Heikki Hokkanen  相似文献   

9.
Chapio is a spring wheat developed by CIMMYT in Mexico by a breeding program that focused on multigenic resistances to leaf rust and stripe rust. A population consisting of 277 recombinant inbred lines (RILs) was developed by crossing Chapio with Avocet. The RILs were genotyped with DArT markers (137 randomly selected RILs) and bulked segregant analysis conducted to supplement the map with informative SSR markers. The final map consisted of 264 markers. Phenotyping against stripe rust was conducted for three seasons in Toluca, Mexico and at three sites over two seasons (total of four environments) in Sichuan Province, China. Significant loci across the two inter-continental regions included Lr34/Yr18 on 7DS, Sr2/Yr30 on 3BS, and a QTL on 3D. There were significant genotype × environment interactions with resistance gene Yr31 on 2BS being effective in most of the Toluca environments; however, a late incursion of a virulent pathotype in 2009 rendered this gene ineffective. This locus also had no effect in China. Conversely, a 5BL locus was only effective in the Chinese environments. There were also complex additive interactions. In the Mexican environments, Yr31 suppressed the additive effect of Yr30 and the 3D locus, but not of Lr34/Yr18, while in China, the 3D and 5BL loci were generally not additive with each other, but were additive when combined with other loci. These results indicate the importance of maintaining diverse, multi-genic resistances as Chapio had stable inter-continental resistance despite the fact that there were QTLs that were not effective in either one or the other region.  相似文献   

10.
Breeding for resistance to Septoria tritici blotch (STB), caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is an essential component in controlling this important foliar disease of wheat. Inheritance of seedling resistance to seven worldwide pathogen isolates has been studied in a doubled-haploid (DH) population derived from a cross between the field resistant cultivar Solitär and the susceptible cultivar Mazurka. Multiple quantitative trait locus (QTL) mapping revealed major and minor genetic effects on resistance as well as several epistatic relationships in the seedling stage. Solitär conferred resistance to isolate IPO323, governed by Stb6 on chromosome 3A, as well as to IPO99015, IPO92034, Hu1 and Hu2 controlled by a QTL on chromosome arm 1BS, possibly corresponding to Stb11 and minor QTL on chromosomes 1B, 3D, 6B and 7D. Resistance of Mazurka to IPO90015 and BBA22 was caused by a QTL located in a region on 4AL which harbours Stb7 or Stb12. QTL specific to pycnidial coverage on 3B and specific to necrosis on 1A could be discovered for isolate IPO92034. Pairwise epistatic interactions were reliably detected with five isolates. Although their contributions to the total variance are generally low, the genotypic effect of the QTL by QTL interaction of 4AL (Stb7 or Stb12) and 3AS (Stb6) made up almost 15% of disease expression. Altogether, the results suggest a complex inheritance of resistance to STB in the seedling stage in terms of isolate-specificity and resistance mechanisms, which have implications for marker-assisted breeding in an attempt to pyramid STB resistance genes.  相似文献   

11.
A set of 142 winter wheat recombinant inbred lines (RILs) deriving from the cross Heshangmai x Yu8679 were tried in four ecological environments during the seasons 2006 and 2007. Nine agronomic traits comprising mean grain filling rate (GFR(mean)), maximum grain filling rate (GFR(max)), grain filling duration (GFD), grain number per ear (GNE), grain weight per ear (GWE), flowering time (FT), maturation time (MT), plant height (PHT) and thousand grain weight (TGW) were evaluated in Beijing (2006 and 2007), Chengdu (2007) and Hefei (2007). A genetic map comprising 173 SSR markers and two EST markers was generated. Based on the genetic map and phenotypic data, quantitative trait loci (QTL) were mapped for these agronomic traits. A total of 99 putative QTLs were identified for the nine traits over four environments except GFD, PHT and MT, measured in two environments (BJ07 and CD07), respectively. Of the QTL detected, 17 for GFR(mean), 16 for GFR(max), 21 for TGW and 10 for GWE involving the chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 6D and 7D were identified. Moreover, 13 genomic regions showing pleiotropic effects were detected in chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5B, 6D and 7D; these QTL revealing pleiotropic effects may be informative for a better understanding of the genetic basis of grain filling rate and other yield-related traits, and represent potential targets for multi-trait marker aided selection in wheat.  相似文献   

12.
Nitric oxide (NO) is an important plant signaling molecule that has a vital role in abiotic stress tolerance. In the present study, we assessed drought-induced (15 and 30% PEG, polyethylene glycol) damage in wheat (Triticum aestivum L. cv. Prodip) seedlings and mitigation by the synergistic effect of exogenous Arg (0.5 mM l-Arginine) and an NO donor (0.5 mM sodium nitroprusside, SNP). Drought stress sharply decreased the leaf relative water content (RWC) but markedly increased the proline (Pro) content in wheat seedlings. Drought stress caused overproduction of reactive oxygen species (ROS) and methylglyoxal (MG) due to the inefficiency of antioxidant enzymes, the glyoxalase system, and the ascorbate-glutathione pool. However, supplementation with the NO donor and Arg enhanced the antioxidant defense system (both non-enzymatic and enzymatic components) in drought-stressed seedlings. Application of the NO donor and Arg also enhanced the glyoxalase system and reduced the MG content by increasing the activities of the glyoxalase system enzymes (Gly I and Gly II), which restored the leaf RWC and further increased the Pro content under drought stress conditions. Exogenous NO donor and Arg application enhanced the endogenous NO content, which positively regulated the antioxidant system and reduced ROS production. Thus, the present study reveals the crucial roles of Arg and NO in enhancing drought stress tolerance in wheat seedlings by upgrading their water status and reducing oxidative stress and MG toxicity.  相似文献   

13.
Adult plant resistance to stripe (yellow) rust in the wheat cultivar Kariega has previously been ascribed to a major quantitative trait locus (QTL) on each of chromosomes 2B and 7D, along with a number of minor QTL. We have extended both the size of the cv. Kariega × cv. Avocet S mapping population, and the marker coverage within it, by assembling a set of Diversity Array Technology (DArT) markers. This has allowed for the analysis of the genetic basis of the adult plant and seedling resistances to stripe, leaf and stem rust present in the two mapping population parents. The stripe rust reactions of the segregating material were assessed in both field (three scoring dates) and greenhouse experiments. The chromosome 2B QTL became more important than the Lr34/Yr18 complex on chromosome 7D as the plants aged. As the infection progressed, the two QTL explained an increasing proportion of the variance for percentage leaf area infected. The cv. Kariega allele at the minor chromosome 4A QTL had a consistent effect on the severity of stripe rust infection and the overall plant reaction at the earlier scoring dates, but lost importance as the disease progressed. Several rust resistances were detected using an improved greenhouse-based test.  相似文献   

14.
A comprehensive collection of wheat aneuploids, whole chromosome substitutions (both intervarietal and interspecific) and wheat–alien addition lines, along with various introgression and near-isogenic lines, has been created over a period of years, primarily to provide the means of localizing the genes underpinning traits and to introduce novel genes into the bread wheat genome. For a time, interest in this class of genetic material was on the wane, but more recently it has revived in the context, for example, of localizing DNA-based markers, designing chromosome-specific bacterial artificial chromosome libraries, and establishing functional differences between alleles and homoeoalleles. Here, a brief review is provided of recent applications of precise genetic stocks in the field of molecular genetics, functional genetics and genomics of the Triticeae species.  相似文献   

15.

Key message

Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement.

Abstract

Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today’s fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.  相似文献   

16.
The genealogical and geographic structure of variation in spikelet morphology was analyzed for central Eurasian wild wheat Aegilops tauschii Coss. using a diverse array of 203 sample accessions that represented the entire species range. In this sample set, two subspecies were identified on the basis of sensu-stricto criteria: only the accessions having markedly moniliform spikes were assigned to Ae. tauschii Coss. subspecies strangulata (Eig) Tzvel., whereas those having mildly moniliform and cylindrical spikes to Ae. tauschii Coss. subspecies tauschii. In a graph of the first two axes from a principal component analysis based on nine spikelet traits, the plots of the two subspecies formed separate clusters, indicating that subspecies strangulata sens. str. is a practically usable taxon. Chloroplast-DNA-based genealogical analyses suggested that subspecies strangulata diverged from an ancestor that carried a specific chloroplast DNA type, whereas, after divergence, this subspecies became polyphyletic, likely through hybridization. Geographically, significant longitudinal and latitudinal clines were detected for spikelet size, with spikelets tending to be small in the eastern and southern regions. These results shed some light on the patterns of subspecies divergence and spikelet-shape diversification in the course of Ae. tauschii’s long-distance dispersal from the Transcaucasus to China.  相似文献   

17.

Key message

Spelt wheat is a distinct genetic group to elite bread wheat, but heterosis for yield and protein quality is too low for spelt to be recommended as heterotic group for hybrid breeding in wheat.

Abstract

The feasibility to switch from line to hybrid breeding is currently a hot topic in the wheat community. One limitation seems to be the lack of divergent heterotic groups within wheat adapted to a certain region. Spelt wheat is a hexaploid wheat that can easily be crossed with bread wheat and that forms a divergent genetic group when compared to elite bread wheat. The aim of this study was to investigate the potential of Central European spelt as a heterotic group for Central European bread wheat. We performed two large experimental field studies comprising in total 43 spelt lines, 14 wheat lines, and 273 wheat–spelt hybrids, and determined yield, heading time, plant height, resistance against yellow rust, leaf rust, and powdery mildew, as well as protein content and sedimentation volume. Heterosis of yield was found to be lower than that of hybrids made between elite wheat lines. Moreover, heterosis of the quality trait sedimentation volume was negative. Consequently, spelt wheat does not appear suited to be used as heterotic group in hybrid wheat breeding. Nevertheless, high combining abilities of a few spelt lines with elite bread wheat lines make them interesting resources for pre-breeding in bread wheat. Thereby, the low correlation between line per se performance and combining ability of these spelt lines shows the potential to unravel the breeding value of genetic resources by crossing them to an elite tester.
  相似文献   

18.
Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.  相似文献   

19.
The dynamics of roots and soil organic carbon (SOC) in deeper soil layers are amongst the least well understood components of the global C cycle, but essential if soil C is to be managed effectively. This study utilized a unique set of land-use pairings of harvested tallgrass prairie grasslands (C4) and annual wheat croplands (C3) that were under continuous management for 75 years to investigate and compare the storage, turnover and allocation of SOC in the two systems to 1 m depth. Cropland soils contained 25 % less SOC than grassland soils (115  and 153 Mg C ha?1, respectively) to 1 m depth, and had lower SOC contents in all particle size fractions (2000–250, 250–53, 53–2 and <2 μm), which nominally correspond to SOC pools with different stability. Soil bulk δ13C values also indicated the significant turnover of grassland-derived SOC up to 80 cm depth in cropland soils in all fractions, including deeper (>40 cm) layers and mineral-associated (<53 μm) SOC. Grassland soils had significantly more visible root biomass C than cropland soils (3.2 and 0.6 Mg ha?1, respectively) and microbial biomass C (3.7 and 1.3 Mg ha?1, respectively) up to 1 m depth. The outcomes of this study demonstrated that: (i) SOC pools that are perceived to be stable, i.e. subsoil and mineral-associated SOC, are affected by land-use change; and, (ii) managed perennial grasslands contained larger SOC stocks and exhibited much larger C allocations to root and microbial pools than annual croplands throughout the soil profile.  相似文献   

20.
This study was designed to identify the rare?type?ABO?blood?groups, B(A) 02, from Eastern China. Three samples with discordant serological results during routine blood type identification and four samples from one sample’ family were selected. All of them were detected by serological method. The exon 6 and 7 of the ABO genes were amplified by PCR and sequenced. They were typed as AsubB by serology and as BO by genotype. In AsubB samples, nt 700C>G mutation was detected in B gene, which was previously defined as B(A)02 alleles. In these seven samples, six showed B(A)02/O01 and one showed B(A)02/O02.B(A)02 allele was found to be more common in this study than B(A)04 which is considered to be more frequent than B(A)02. The careful identification of rare blood types is important for the safety of clinical blood transfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号