首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ants are considered an important faunal group for the functioning of arid rangelands, they have a long history of use for environmental monitoring, and exhibit four global patterns in grazing lands: (i) soil and vegetation type are primary determinants of ant community composition, and have a far greater effect on ant community composition than grazing; (ii) grazing induces species compositional change, but does not necessarily affect species richness or abundance; (iii) a species response to grazing is not necessarily consistent across habitats; and (iv) approximately one‐quarter to one‐half of species that are common enough for statistical analysis have significant responses to grazing. Here we report the patterns of arid zone ant faunas as they exist after several decades of sheep grazing in southern Australia, and examine the extent to which they conform to the four global patterns. We measured ant faunas along grazing gradients (varying distance to water) in seven paddocks containing two soil and two vegetation types on five pastoral properties. Total site abundance and richness of ants did not differ significantly with distance from water, but the abundance of 10 (34%) of the 29 most common species did differ; three were increasers, three were decreasers, and four had mixed responses dependent on soil/vegetation type. Rare species showed no trend with grazing intensity. The ant fauna of the more structurally complex vegetation types appeared to be the most vulnerable to grazing effects. Multivariate analysis showed soil type was the primary factor influencing ant faunal composition, followed by vegetation structure; however, grazing treatment effects were present. This study fully supports the recently identified global patterns of ant responses to grazing. It also shows that sampling regional ant faunas using widely dispersed traps can detect ant faunal patterns comparable to studies that use smaller‐scale grids of traps.  相似文献   

2.
Grazing by domestic livestock is one of the most widespread forms of anthropogenic disturbance globally, and can have a major impact on biodiversity and therefore conservation values. Here we use ants to assess the extent to which livestock grazing is compatible with biodiversity conservation in a tropical savanna of northern Australia, where there is growing pressure to intensify pastoral production. We focus on the extent to which ant responses conform with four general patterns identified in a recent global review: (1) soil and vegetation type have a far bigger impact on ant community composition than does grazing; (2) grazing modifies ant species composition but often not species richness or total abundance; (3) a species’ response often varies among habitats; and (4) between 25–50% of the species that can be statistically analysed are responsive to grazing. We sampled ants using pitfall traps at 38 sites in two land systems, based on cross-fence comparisons of areas of different grazing intensities. A total of 130 ant species from 24 genera were recorded, with the fauna dominated by species of Iridomyrmex and Monomorium. Land system was the primary driver of variation in ant species richness and composition, and grazing intensity was related to neither species richness nor total abundance. Only 10% of common species appeared to be impacted by grazing. Overall, ant responses to grazing in our study region were generally consistent with the four global patterns, except that the local fauna seems to be particularly resilient. Such resilience indicates that current grazing management practices are compatible with the conservation of ant biodiversity.  相似文献   

3.
Ants are one of the most abundant and ubiquitous organisms on Earth and play critical roles in multiple ecosystem services such as seed dispersal and nutrient cycling. Despite this, the effects of climatic and land use stressors on particular species or groups of ants are poorly known. We conducted a regional field survey across 108 locations in south-eastern Australia, using correlation network analysis and structural equation modelling to identify how ants respond to environmental stressors. We found contrasting relationships amongst ants, and aridity, and vertebrate grazing intensity and history. Increasing aridity was associated with reduced ant richness, whereas increasing grazing intensity was associated with greater ant richness directly, and indirectly, via reductions in litter depth and perennial grass density. However, these taxonomically diverse groups of ant species still shared contrasting responses to increasing aridity and grazing intensity. We found strong associations between grazing, aridity and the abundance of Seed Harvesters, weak indirect relationships with Generalist Foragers, but no relationships for Predators or Sugar Feeders. Taken together, our work identifies contrasting relationships amongst grazing, aridity and ants (ant ‘winners’ or ‘losers’) across contrasting ecological contexts. Given that increasing aridity is generally associated with lower grazing intensity, our results suggest that locations with more arid sites will have lower ant richness with fewer Seed Harvesters, whereas more mesic sites with high grazing intensity might increase ant richness, and the abundance of specific ant species. Such knowledge is important if we are to maintain critical ant-mediated functions as Earth becomes drier and grazing intensity increases.  相似文献   

4.
We studied vegetation responses to disturbances originated by ants and voles in subalpine grasslands in the Eastern Pyrenees. We compared the effects of these small-scale disturbances with those of a large-scale disturbance caused by ploughing. We wanted to know if these soil disturbances promoted species richness through the existence of a specific guild of plants colonizing these areas, and if this guild was the same for all soil disturbances, independently of their extent. In general, grassland vegetation seemed to recover relatively quickly from soil-displacement disturbances, and the effects could be scaled up in time and space in terms of species richness and composition. Vole mound composition was similar to that in the surrounding grassland, suggesting that mounds were rapidly colonized by the neighbouring vegetation. Vegetation composition differed between the grassland and the ant mounds. Grasses and erect dicots coped well with repeated disturbance, while rosette-forming species and sedges were very sensitive to it. Landscape processes could be important to understanding recolonization. Species from xeric grasslands were found in mesic grasslands when disturbed by ploughing and on the tops of active ant mounds. Furrows in mesic grasslands recovered well, but decades after disturbance showed long persistence of some xeric species and increased species richness compared to terraces, while xeric grasslands showed decreased richness. This suggests that, because of those disturbances, within-habitat diversity was increased, although landscape diversity was not. However, specific disturbances showed idiosyncratic effects, which could enhance the species richness globally. In ant-affected areas, the grassland itself showed the highest plant species richness, partially associated to the presence of some species with elaiosomes not, or only rarely, found in adjacent grasslands without ant mounds. Therefore, soil disturbances occurring at different spatial scales contributed to complexity in vegetation patterns in addition to abiotic factors and grazing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature of the species follows Tutin et al. (1964–1980) and Bolòs et al. (1993).  相似文献   

5.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

6.
Abstract Taken literally, the aim of biodiversity monitoring is to track changes in the biological integrity of ecosystems. Given the overwhelmingly dominant contribution of invertebrates to biodiversity, no biodiversity monitoring programme can be considered credible if invertebrates are not addressed effectively. Here we review the use of terrestrial invertebrates, with a particular focus on ants, as bioindicators in Australia in the context of monitoring biodiversity in Australia's rangelands. Ant monitoring systems in Australia were initially developed for assessing restoration success following mining, and have since been applied to a wide range of other land‐use situations, including grazing impacts in rangelands. The use of ants as bioindicators in Australia is supported by an extensive portfolio of studies of the responses of ant communities to disturbance, as well as by a global model of ant community dynamics based on functional groups in relation to environmental stress and disturbance. Available data from mining studies suggest that ants reflect changes in other invertebrate groups, but this remains largely undocumented in rangelands. The feasibility of using ants as indicators in land management remains a key issue, given the large numbers of taxonomically challenging specimens in samples, and a lack of invertebrate expertise within most land‐management agencies. However, recent work has shown that major efficiencies can be achieved by simplifying the ant sorting process, and such efficiencies can actually enhance rather than compromise indicator performance.  相似文献   

7.
A functional group model of ant community composition has been widely used in Australia to analyse biogeographical patterns of ant community structure and the responses of ant communities to disturbance. The model has provided valuable support to the widespread use of ant communities as bioindicators of ecological change. However, the model was developed from studies of arid-zone faunas, and its applicability to the World Heritage rainforests of Queensland's humid tropics has not yet been validated. Here we test predictions based on the functional group model for ant communities in Queensland's humid rainforests, by documenting ant community composition and its responses to disturbance on the Atherton Tablelands. Five sites were studied, comprising two relatively undisturbed reference sites representing contrasting rainforest types, and three previously cleared sites, two of which were undergoing revegetation. A variety of sampling techniques were employed, including pitfall trapping, litter extractions, baiting, and general searching. A total of 50 ant species from 29 genera were collected. Site species richness was highest at the reference sites, and lowest at the unvegetated disturbed site, and overall was negatively related to mean ground temperature. As predicted by the functional group model, behaviorally dominant dolichoderines were uncommon or absent at the reference sites, and the most common ants were Generalized myrmicines and Opportunists. Also as predicted, habitat disturbance favored Opportunists, and, as the disturbance involved canopy clearance, this led to colonization by Iridomyrmex and other Dominant dolichoderines. Opportunists represented about 40% of total ants in traps at the reference sites, compared with 80–95% at the disturbed sites. Except one species, Tropical Climate Specialists and Specialist Predators were absent from disturbed sites.In conclusion, patterns of ant composition in relation to disturbance on the Atherton Tablelands conform to the functional group model that has been widely applied to ant faunas elsewhere in Australia. The model may therefore play an important role in the use of ants as bioindicators of ecological change in the World Heritage rainforests of this region.  相似文献   

8.
We use sample-based rarefaction curves to evaluate the efficiency of a rapid species richness assay of ground beetles and ants captured in pitfall traps in the Nahuel Huapi National Park (NW Patagonia, Argentina). We ask whether ant species richness patterns show some concordance with those of beetles, and use several extrapolation indices for estimating the expected number of species at a regional scale. A total of 342 pitfall traps were spread in groups, at an intensity of 9 traps/100 m2, with two collection stations, at each of 19 sites representative of burned and unburned habitats in the forest, scrub and steppe, along a west-to-east transect of 63 km long. The high regional habitat heterogeneity along the west-to-east gradient is paralleled by a turnover of beetle and ant species, although different families of Coleoptera show idiosyncratic responses across habitat types. Spatial stratification of sampling over three major habitats along with the inclusion of burned and unburned environments may improve sampling efficiency. The observed and extrapolated species richness suggests that we captured a high proportion of the total number of species of beetles and ants known for the region. However, trends in species richness of ants may not indicate similar trends in beetles. Ants and beetles cannot be used as surrogate taxa for the analysis of species richness patterns. Instead, both taxa should be considered as focal as they may offer complementary information for the analysis of the effect of disturbance and regional habitat heterogeneity on species diversity patterns at a regional scale.  相似文献   

9.
Aim Comparisons among islands offer an opportunity to study the effects of biotic and abiotic factors on small, replicated biological communities. Smaller population sizes on islands accelerate some ecological processes, which may decrease the time needed for perturbations to affect community composition. We surveyed ants on 18 small tropical islands to determine the effects of island size, isolation from the mainland, and habitat disturbance on ant community composition. Location Thousand Islands Archipelago (Indonesian name: Kepulauan Seribu) off Jakarta, West Java, Indonesia. Methods Ants were sampled from the soil surface, leaf litter and vegetation in all habitat types on each island. Island size, isolation from the mainland, and land‐use patterns were quantified using GIS software. The presence of settlements and of boat docks were used as indicators of anthropogenic disturbance. The richness of ant communities and non‐tramp ant species on each island were analysed in relation to the islands’ physical characteristics and indicators of human disturbance. Results Forty‐eight ant species from 5 subfamilies and 28 genera were recorded from the archipelago, and approximately 20% of the ant species were well‐known human‐commensal ‘tramp’ species. Islands with boat docks or human settlements had significantly more tramp species than did islands lacking these indicators of anthropogenic disturbance, and the diversity of non‐tramp species decreased with habitat disturbance. Main conclusions Human disturbance on islands in the Thousand Islands Archipelago promotes the introduction and/or establishment of tramp species. Tramp species affect the composition of insular ant communities, and expected biogeographical patterns of ant richness are masked. The island with the greatest estimated species richness and the greatest number of unique ant species, Rambut Island, is a forested bird sanctuary, highlighting the importance of protected areas in preserving the diversity of species‐rich invertebrate faunas.  相似文献   

10.
Biological invasions are typically associated with disturbance, which often makes their impact on biodiversity unclear—biodiversity decline might be driven by disturbance, with the invader just being a ‘passenger’. Alternatively, an invader may act as a ‘back-seat driver’, being facilitated by disturbance that has already caused some biodiversity decline, but then causing further decline. Here we examine the interactive effects of anthropogenic fire and invasive ant species (Anoplolepis gracilipes or Wasmannia auropunctata) on native ant diversity in New Caledonia, a globally recognized biodiversity hotspot. We first examined native ant diversity at nine paired burnt and unburnt sites, with four pairs invaded by Anoplolepis, 5 years after an extensive fire. In the absence of invasion, native epigaeic ants were resilient to fire, but native ant richness and the abundance of Forest Opportunists were markedly lower in invaded burnt sites. Second, we examined native ant diversity along successional gradients from human-derived savanna to natural rainforest in the long-term absence of fire, where there was a disconnection between disturbance-mediated variation in microhabitat and the abundance of the disturbance specialist Wasmannia. All native ant diversity responses (total abundance, richness, species composition, functional group richness and the abundance of Forest Opportunists) declined independently of microhabitat variables but in direct association with high Wasmannia abundance. Our results indicate that invasive ants are acting as back-seat drivers of biodiversity decline in New Caledonia, with invasion facilitated by disturbance but then causing further biodiversity decline.  相似文献   

11.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

12.
In this study we examine whether stabilization of denuded coastal foredunes in southeastern Australia with the exotic grass species Ammophila arenaria (marram grass) restores plant and ground‐active arthropod assemblages characteristic of undisturbed foredunes. Vascular plants and arthropods were sampled from foredunes that had been stabilized with marram grass in 1982, and from foredunes with no obvious anthropogenic disturbance (control dunes). All arthropods collected were sorted to Order, and ants (81.5% of all specimens) were further sorted to morphospecies. Abundance within arthropod Orders, as well as richness, composition, and structure of the plant and ant assemblages from control and stabilized dunes, were compared. The abundance of Diptera was significantly greater on stabilized dunes, while the abundance of Isopoda was significantly greater on control dunes. There were no significant differences in morphospecies richness or composition of ant assemblages on the two dunes types, although some differences in the abundances of individual morphospecies were observed. By contrast, stabilized dunes exhibited lower plant species richness and highly significant differences in plant species composition, due mainly to the large projected foliage cover of marram grass. The study revealed that after 12 years, the vegetation composition and structure of stabilized dunes was still dominated by marram grass and, as a result, invertebrate assemblages had not been restored to those characteristic of undisturbed foredunes.  相似文献   

13.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

14.
Ants are the dominant soil faunal group in many if not most terrestrial ecosystems, and play a key role in soil structure and function. This study documents the impacts of invasion by the exotic cat’s claw creeper vine, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) on surface-situated (epigaeic) and subterranean (hypogaeic) ant communities in subtropical SE Queensland Australia where it is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation, smothering standing vegetation and causing canopy collapse. Soil ants were sampled in infested and uninfested areas at eight sites spanning both riparian and non-riparian habitats in subtropical SE Queensland. Patterns of ant species composition and functional grouping in response to patch invasion status, landscape type and habitat stratum were investigated using ANOVA and non-metric multidimensional scaling ordination. The epigaeic and subterranean strata supported markedly different ant assemblages, and ant communities also differed between riparian and non-riparian habitats. However, M. unguis-cati invasion had a surprisingly limited impact. There was a tendency for ant abundance and species richness to be lower in infested patches, and overall species composition was different between infested and uninfested patches, but these differences were relatively small, and did not occur consistently across sites. There were changes in functional group composition that conformed to known functional group responses to environmental change, but these were similarly limited and inconsistent across sites. Our study has shown that ant communities are surprisingly resilient to invasion by M. unguis-cati, and serves as a warning against making assumptions about invasion impacts based on visual appearances.  相似文献   

15.
Plants bearing extrafloral nectaries (EFNs) often have traits typical of pioneer species, and may be expected to proliferate in disturbed habitats. However, a negative effect of disturbance on visitation by attendant ants could prevent EFN‐bearing plants from acting as disturbance winners. Here, we address the effects of chronic anthropogenic disturbance on the abundance of EFN‐bearing plants and their interactions with attendant ants in Caatinga vegetation of northeastern Brazil. We recorded the abundance of EFN‐bearing plants, proportion of plants visited by ants and composition of ant attendant species at 24 sites varying in levels of disturbance. EFN‐bearing plants as a whole did not behave as a disturbance winner group. The responses of the 13 species to increasing disturbance were highly variable, with three species declining in abundance (loser species). The richness of ant species attending EFNs did not vary with disturbance, but species composition did. The overall proportion of EFN‐bearing plants attended by ants per 5‐min period was not affected by disturbance. However, for the three loser species, attendance decreased from about 50 percent with low and moderate disturbance to half that with very high disturbance. We hypothesize that disturbed sites are more stressful for loser species compared with other EFN‐bearing plants, with physiological stress resulting in lower production of EFN secretions and reduced attraction of ants. This would make such species double losers, with physiological stress at disturbed sites not only directly influencing their performance but also indirectly affecting it through the disruption of a key mutualism.  相似文献   

16.
Understanding how communities respond to environmental gradients is critical to predict responses of species to changing habitat conditions such as in regenerating secondary habitats after human land use. In this study, ground-living ants were sampled with pitfall traps in 27 plots in a heterogeneous and diverse subtropical forest to test if and how a broad set of environmental variables including elevation, successional age, and tree species richness influence ant diversity and community composition. In total, 13,441 ant individuals belonging to 71 species were found. Ant abundance was unrelated to all environmental variables. Rarefied ant species richness was negatively related to elevation, and Shannon diversity decreased with shrub cover. There was considerable variation in ant species amongst plots, associated with elevation, successional age, and variables related to succession such as shrub cover. It is shown that younger secondary forests may support a species-rich and diverse community of ants in subtropical forests even though the species composition between younger and older forests is markedly different. These findings confirm the conservation value of secondary subtropical forests, which is critical because subtropical forests have been heavily exploited by human activities globally. However, the findings also confirm that old-growth forest should have priority in conservation as it supports a distinct ant community. Our study identifies a set of ant species which are associated with successional age and may thus potentially assist local conservation planning.  相似文献   

17.
Frequent low‐intensity fires are used in management of Australian forests to reduce fuel loads and protect natural resources and human property. Low‐intensity fires are typically patchy and unburned litter microhabitats are often associated with large objects such as logs, which may act as refuges both for vertebrate and for invertebrate fauna. The aim of this study was to determine whether ants were using unburned leaf litter microhabitats associated with logs as a refuge after fire. The study was carried out in Bulls Ground State Forest, New South Wales, Australia, where experimentally burned and unburned sites had previously been established. Species richness and abundance of ants in leaf litter did not differ between habitats adjacent to logs and away from logs, in burned and unburned sites. Fifteen of the 42 ant species were found in all four habitats, and contributed 94% of total ant abundance. Every habitat had a group of unique species, which together made up 30% of the total species richness. There was also a distinct group of species that was not found in the leaf litter associated with the burned/open habitat. However, as 45% of all species were found in low abundance (less than 10 individuals), care must be taken in inferring patterns for these groups. When functional groups were used to assess community structure, ‘cryptic’ species were found to be common in all habitats, whereas ‘subordinate Camponotini’ were found in burned habitats only. This study indicates that in an area where frequent burning is applied on a broad scale, preserving a range of microhabitats, including those associated with retained logs, may make a substantial contribution to conserving ant biodiversity.  相似文献   

18.
Grazing and browsing by sheep and goats has been an important anthropogenic influence on ecosystems in the Mediterranean region for centuries. This influence has changed significantly in recent decades, with a general shift from range grazing to the penning of animals. The intermediate disturbance hypothesis (IDH) proposes that perturbation - including anthropogenic disturbance - is the norm for Mediterranean ecosystems, and that higher species diversity is found under conditions of continuous, moderate disturbance. Here we test the IDH as it relates to grazing of scrub and open forest habitats in Cyprus, while also testing for the effects of fire. We carried out surveys of breeding birds and vegetation at 48 study sites in scrub and open woodland across Cyprus. We estimated relative grazing pressure (past and present) and fire history at these sites, and tested for associations between these factors, breeding bird species richness and perennial vegetation diversity. We found moderate current grazing reduces density of lower and middle level scrub, and a higher level of diversity of perennial vegetation at moderately over intensively grazed sites. We found that moderate historical grazing pressure had a positive influence on richness of breeding bird species in lower scrub habitat such as phrygana, but that this effect was weaker the taller and denser the habitat. By contrast, current grazing pressure had a negative effect on species richness in lower scrub, but species richness in grazed habitats was higher in denser, taller scrub habitat such as garrigue and maquis. Our study suggests grazing plays an important role in maintaining habitat heterogeneity but the impact on avian species richness depends on the density and height of the vegetation.  相似文献   

19.
Fire is an important component of many natural ecosystems affecting plant communities and arthropods by mortality during combustion and/or indirectly through the modification of the habitat. The Iberá Natural Reserve (INR) is one of the most diverse ecosystems in northern Argentina; it is dominated by grasslands commonly affected by disturbances, such as grazing and fire. The objective of this work was to study the response of ground-foraging ant assemblages, particular species, and functional groups to an extended fire of high intensity in four natural INR habitats with >5 years of cattle exclusion (strict conservation area). A total of 12,798 ant workers of 67 species were captured in 39 sampling stations. The ant fauna was less abundant in burned sites only a few days after the fire; 6 months later, no effect was detected. Richness and abundance of ants differed among unburned habitats. However, fire effect on species richness and composition remained unclear. The rapid recovery of the ant fauna made these insects poor indicators of long-term fire-promoted changes on biodiversity in open habitats dominated by grassland, though some ant species showed a high level of habitat fidelity mainly in unburned habitats. These results agree with those from other areas of the world, indicating that ants are particularly unreliable biodiversity indicators, with the exception of severe disturbance with long-term habitat restoration. Management decisions at the INR should be oriented to preserve the closed savanna, one of the most diverse and threatened habitat of Argentina.  相似文献   

20.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号