首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Recent work on bryophyte diversity in lowland forests of northern South America has suggested the existence of a new type of cloud forest, the ‘tropical lowland cloud forest’ (LCF). LCF occurs in river valleys in hilly areas with high air humidity and morning fog, and is rich in epiphytes. We explored epiphyte abundance and canopy microclimate of LCF in a lowland area (200–400 m asl) near Saül, central French Guiana. We analyzed the vertical distribution of epiphytic cover and biomass on 48 trees, in LCF and in lowland rain forest (LRF) without fog. Trees in LCF had significantly more epiphytic biomass than in LRF; mean total epiphytic biomass in LCF was about 59 g/m2, and 35 g/m2 in LRF. In all height zones on the trees, total epiphyte cover in LCF exceeded that in LRF, with ca 70 percent mean cover in LCF and ca 15 percent in LRF. During both wet and dry seasons, mean diurnal relative air humidity (RH) was higher in LCF than in LRF, and persistence of high RH after sunrise significantly longer in LCF. We suggest that the prolonged availability of high air humidity in LCF and the additional input of liquid water through fog, enhance epiphyte growth in LCF by shortening the desiccation period and lengthening the period of photosynthetic activity of the plants.  相似文献   

2.
Abstract:Epiphytic lichens (and some non-lichenized fungi) on 34 coppices (204 stems) ofCorylus avellana were investigated in a 140 ha study area in south-western Norway. A total of 65 species were recorded on a total bark area of 63 m2. Corylus in broad-leaved deciduous forest supported more species of macrolichens, and fewer species of microlichens, than Corylus in pine forest. The macrolichen flora of the deciduous forest differed from that of the pine forest by having a rich flora of species belonging to the Lobarion alliance. OldCorylus coppices with tall stems (>8 m), large girth (>8 cm diameter at breast height) and a noticeable cover of macrolichens (>10% of bark area) supported the highest number of rare species, and overall, species of macrolichens. More than 50% cover of microlichens indicated richness and rarity of microlichens on Corylus.  相似文献   

3.
Recent studies have described a new tropical lowland forest type in the Guianas, the tropical lowland cloud forest. It is characterized by an enriched epiphytic species diversity particularly for bryophytes compared to common lowland rainforest, and is facilitated by frequent early morning fog events in valley locations. While the increase in epiphytic species diversity in lowland cloud forests has been documented, uncertainties remain as to (1) how this small scale variation in water supply is shaping the functional diversity of epiphytic components in lowland forests, and (2) whether information on functional group composition of epiphytes might aid in discerning these cloud forests from the common lowland rainforest. We compare the distribution of functional groups of epiphytes across height zones in lowland cloud forest and lowland rain forest of French Guiana in terms of biomass, cover as well as the composition of bryophyte life-forms. Both forests differed in functional composition of epiphytes in the canopy, in particular in the mid and outer canopy, with the cloud forest having a higher biomass and cover of bryophytes and vascular epiphytes as well as a richer bryophyte life-form composition. Bryophyte life-forms characteristic for cloud forests such as tail, weft and pendants were almost lacking in the canopies of common rain forest whereas they were frequent in lowland cloud forests. We suggest that ground-based evaluation of bryophyte life-form composition is a straightforward approach for identifying lowland cloud forest areas for conservation, which represent biodiversity hotspots in tropical lowland forests.  相似文献   

4.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

5.
Ecological studies in tropical rain forests traditionally focus on trees above a threshold diameter at breast height (dbh), since ignoring plant species of the other structural compartments is believed to be an acceptable tradeoff between exhaustiveness and effectiveness. However, the consequences of missing species below a threshold dbh value have been largely neglected so far. We evaluated whether the response of species diversity of ≥10-cm dbh trees was similar to the response of other structural ensembles (namely treelets, saplings, and terricolous herbs) in a lowland tropical rain forest, to three disturbance regimes: natural gap dynamics (control), and selective logging with and without additional thinning. We studied forest vegetation composition and diversity in a 20-yr replicated field experiment comprising nine 1 ha permanent plots established in a semi-deciduous rain forest of the Congo Basin and equally distributed among the three treatments. Once corrected by stem density, species richness was similar between logged (20 years since logging) and untouched old-growth forest stands with respect of trees, but higher with respect of treelets. As disturbance intensity increased, species richness increased within sapling layers but decreased within herb layers, while species spatial turnover (beta diversity) increased in both cases. Regarding the parameters of the partitioned rarefaction curves and relative abundance distribution curves, no correlation was found between trees and any of the other structural compartments. Whilst tree and treelet species composition was similar among treatments, the understories still reflected past disturbance intensity, with a strong response of the sapling and herb layers. These results show that ecological studies based solely on tree layers (dbh  10 cm) are misleading because their response to disturbance cannot be used as a surrogate for the response of other structural ensembles. Long-lasting effects of anthropogenic disturbance on the sapling bank and the herb layer may durably influence the long-term forest dynamics. Since overstory but not understory plant communities have recovered from human disturbances 20 years after silvicultural operations, African tropical rain forest ecosystems may not be as resilient to selective logging as previously thought.  相似文献   

6.
7.
Afrotropical ant-following birds are vulnerable to forest loss and disturbance, but critical habitat thresholds regarding their abundance and species richness in human-dominated landscapes, including industrial oil palm plantations, have never been assessed. We measured forest cover through Landsat imagery and recorded species richness and relative abundance of 20 ant-following birds in 48 plots of 1-km2, covering three landscapes of Southwest Cameroon: Korup National Park, smallholder agroforestry areas (with farms embedded in forest), and an industrial oil palm plantation. We evaluated differences in encounter frequency and species richness among landscapes, and the presence of critical thresholds through enhanced adaptive regression through hinges. All species were detected in Korup National Park and the agroforestry landscape, which had similar forest cover (>85%). Only nine species were found in the oil palm plantation (forest cover = 10.3 ± 3.3%). At the 1-km2 scale, the number of species and bird encounters were comparable in agroforests and the protected area: mean species richness ranged from 12.2 ± 0.6 in the park and 12.2 ± 0.6 in the agroforestry matrix to 1.0 ± 0.4 in the industrial oil palm plantation; whereas encounters decreased from 34.4 ± 3.2 to 26.1 ± 2.9 and 1.3 ± 0.4, respectively. Bird encounters decreased linearly with decreasing forest cover, down to an extinction threshold identified at 24% forest cover. Species richness declined linearly by ca. one species per 7.4% forest cover lost. We identified an extinction threshold at 52% forest cover for the most sensitive species (Criniger chloronotus, Dicrurus atripennis, and Neocossyphus poensis). Our results show that substantial proportions of forests are required to sustain complete ant-following bird assemblages in Afrotropical landscapes and confirm the high sensitivity of this bird guild to deforestation after industrial oil palm development. Securing both forest biodiversity and food production in an Afrotropical production landscape may be best attained through a combination of protected areas and wildlife-friendly agroforestry.  相似文献   

8.
Current research includes the effects of asphalt forest roads on changes of plant cover and tree regeneration from asphalt forest roads edges towards its inner parts in two compartments of Nave Asalem forests located in the north of Iran. For this reason, in each side of road, 6 sample plots (20 m × 20 m) were established for measuring plant species diversity. In each sample plot, ground vegetation and tree regeneration were assessed within nine 2 × 2 m micro plots. In total, 12 sample plots and 108 μ plots were established. Results indicated that the road positions were effective on plant species diversity. The highest diversity and evenness indices value were observed down of the road compared to the up of the road position for herbal and tree regeneration layers. The same results were found also for herbal richness indices. Up of road position had the greatest value of richness indices in comparison to the other road position for tree regeneration layer. Also, the results showed that diversity, richness, and evenness indices were decreased with the increasing of distance from the road side for herbs and tree regeneration layers. This study indicated that roads can increase plant biodiversity; that is, tree regeneration density.  相似文献   

9.
Habitat loss and fragmentation have gradually caused loss of diversity and consequently the decline of ecological services. This study aimed to evaluate the effect of tropical forest fragments as natural habitats (river valley fragments and plateau fragments) on the community of predatory and omnivorous ants in nearby sugarcane fields. Twenty fields adjacent to these fragments were selected and evaluated one (dry season) and four months (rainy season) after harvest. In each field, ants were sampled in five linear plots (10 m inside the fragment, 0 m (field path between field and fragment), 5 m, 50 m and 100 m inside the crop fields). Each plot comprised ten sardine baits in a row parallel to the field edge. Species richness and frequency of ant species decreased with increasing distance from the forest fragments. Inside fields, species richness and frequency were higher during the period of vegetative growth (rainy season) than after harvest (dry season). Ant communities of sugarcane fields and forest fragments were more similar later in the season than directly after sugarcane harvest suggesting recolonization of the fields from the fragments. Several ant species were limited to forest fragments after harvest but occurred later in the season also in sugarcane fields confirming the potential contribution of fragments to the recolonization process and therefore to biological control of sugarcane-dominated pest insects.  相似文献   

10.
Fires change the diversity and composition of insects in forest ecosystems. In the present study, we examined the change of butterfly communities after a fire including the increase of butterfly richness, grassland species, and generalist species, and more changed communities. Butterflies were surveyed for 5 years after the big Uljin fire in 2007. During each year, butterflies were counted monthly by the line transect method from April to October at two sites (burned vs. unburned, ~ 1.5 km routes). Specialist grassland species decreased in the year of the fire but generalist species did not increase significantly. Butterfly richness did not change but butterfly diversity decreased due to a sudden increase of a species, Polygonia c-aureum. The butterfly community in the year of the fire was different from those in later years, showing temporary change of community in the year of the fire. Species composition was significantly different between burned and unburned sites, but this phenomenon cannot be interpreted as an influence of fire due to highly variable species composition of local butterfly assemblages and the non-repetitive sampling site of the present study.  相似文献   

11.
The composition, diversity, and structure of vascular plants are important indicators of forest health. Changes in species diversity, structural diversity, and the abundance of non-native species are common national concerns, and are part of the international criteria for assessing sustainability of forestry practices. The vegetation indicator for the national Forest Inventory and Analysis (FIA) Program, USA, was designed to assess these issues. The objectives of this study were to: (1) assess the repeatability and practicality of the vegetation field techniques using independent measurements of 48 plots by two botanists and (2) examine the interpretation of forest health indicators from 2 years of data collected on 110 plots in the state of Oregon. Plant identification was similar for both botanists, with 80% of all plant species on the plot being identified to species, and another 14% identified to the genus level; the greatest problems were in dry forest types where plants had senesced by July. Agreement among botanists for species identification was 71% at the subplot level and 67% at the quadrat level, with many differences caused by plants being identified as closely related species, usually in the same genus. As a result, agreement between botanists on species richness and the abundance of non-native species was high, with correlation coefficients of 0.94 and 0.98, respectively. Quadrats detected only 20% of the species found from the subplot search, on average. Although botanists differed in their speed, 22% of subplot searches were completed within 15 min and 71% were completed within 30 min. Dramatic differences in patterns of plant diversity were found across the ecological regions of Oregon, with high plot richness and the highest species turnover among plots found in the Blue Mountains. Abundance of non-native species varied from 15% of the species in juniper (Juniperus occidentalis Hook.) stands to 1% in high-elevation conifer stands. The proportion of cover made up of non-native species was highest in juniper and Ponderosa pine (Pinus ponderosa P. & C. Lawson) forest types. Numbers of non-native species on a plot increased with the number of native species, but the relationship was weak (R2 = 0.09). Results suggest that the vegetation indicator provides a robust and valuable tool for assessing forest health.  相似文献   

12.
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.  相似文献   

13.
The structure, function, and ecosystem services of tropical forest depend on its species richness, diversity, dominance, and the patterns of changes in the assemblages of tree populations over time. Long-term data from permanent vegetation plots have yielded a wealth of data on the species diversity and dynamics of tree populations, but such studies have only rarely been undertaken in tropical forest landscapes that support large human populations. Thus, anthropogenic drivers and their impacts on species diversity and community structure of tropical forests are not well understood. Here we present data on species diversity, community composition, and regeneration status of tropical forests in a human-dominated landscape in the Western Ghats of southern India. Enumeration of 40 plots (50 m × 20 m) results a total of 106 species of trees, 76 species of saplings and 79 species of seedlings. Detrended Correspondence Analysis ordination of the tree populations yielded five dominant groups, along disturbance and altitudinal gradients on the first and second axes respectively. Abundant species of the area such as Albizia amara, Nothopegia racemosa and Pleiospermum alatum had relatively few individuals in recruiting size classes. Our data indicate probable replacement of rare, localized, and old-growth ‘specialists’ by disturbance-adapted generalists, if the degradation is continuing at the present scale.  相似文献   

14.
《Mammalian Biology》2014,79(4):254-258
Low density occurrence of large carnivore species and direct hunting of predators and prey make carnivore conservation complex. Vital baseline information on population status of large carnivores is still deficient in most forests of eastern Himalaya, which are known to be the biodiversity hotspots. To fill this information gap, we estimated the large carnivore population status and abundance in an intricate eastern Himalayan lowland tropical forest in Pakke Tiger Reserve, Arunachal Pradesh. Population status and abundance estimates of tigers and leopards were made through individual identification using closed capture-recapture sampling. To estimate the dhole abundance photographic encounter rate was used. For individually non-identifiable species photographic rate seemed to correlate well with animal abundance. The estimated tiger and leopard density through 1/2 MMDM was 2.14 ± 0.04/100 km2 and 2.99 ± 1.13/100 km2 respectively. Maximum likelihood estimates shows density of tiger 1.86 ± 0.7 and for leopard 2.82 ± 1.2.The estimated dhole abundance was (N) 10.6 ± 0.94, and density 6.62 ± 0.58 individuals in 100 km2. Further, occupancy estimation of large carnivores may be tried along with assessing the comparative efficacy of other population estimation methods to establish better monitoring methods for this region.  相似文献   

15.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

16.
17.
With the ongoing global biodiversity loss, approaches to measuring and monitoring biodiversity are necessary for effective conservation planning, especially in tropical forests. Remote sensing has much potential for biodiversity mapping, and high spatial resolution imaging spectroscopy (IS) allows for direct prediction of tree species diversity based on spectral reflectance. The objective of this study was to test an approach for mapping tree species alpha diversity that takes advantage of an unsupervised object-based clustering. Tree species diversity of a tropical montane forest in the Taita Hills, Kenya, was mapped based on spectral variation of high spatial resolution IS data.Airborne IS data and species data from 31 field plots were collected in the study area. Species diversity measures were obtained from the IS data by clustering spectrally similar image segments representing tree crowns. In order to do this, the image was segmented to objects that represented tree crowns. Three measures of species diversity were calculated based on the field data and on the clustering results, and the relationships were statistically analyzed.According to the results, the approach succeeded well in revealing tree species diversity patterns. Especially, tree species richness was well predicted (RMSE = 3 species; r2 = 0.50) directly based on the clustering results. The optimal number of clusters was found to be close to the estimated number of tree species in the forest. Minimum tree size was an important determinant of the relationships, because only part of the trees are visible to the airborne sensor in the multi-layered closed canopy forest.In general, the object-based approach proved to be a viable alternative to a pixel-based clustering. The approach takes advantage of the capability of IS to detect spectral differences among tree crowns, but without the need for spectral training data, which is expensive to collect. With further development, the approach could be applied also for estimating beta diversity.  相似文献   

18.
The seasonal occurrence and distribution of myxomycetes on different types of newly defoliated leaf litter were examined in a secondary forest in a warm temperate region of western Japan. The two types of leaf litter (deciduous trees, Prunus verecunda and Quercus variabilis, and evergreen trees, Q. glauca and Cinnamomum camphora) were incubated in trays on the forest floor. A total of 45 myxomycete species were recorded from 3021 collected samples that occurred at the July peak during the warmest and humidest season from April to November. The occurrence of species was significantly related to the changes in mean temperature and minimum temperature on both leaf types under humid conditions. Myxomycete assemblages were divided into three seasonal phases. Most of the species occurred in June–September, while a few species demonstrated characteristic distributions; i.e., Didymium melanospermum appeared in April– May and Diderma umbilicatum appeared in October– November. The respective leaf types supported the reproduction of myxomycetes with high species richness and diversity, with 34 species and H’ = 2.59 on deciduous trees and similarly 30 species and H’ = 2.49 on evergreen trees. Several species, however, exhibited a preference for either the deciduous tree or evergreen tree leaves. Thus, a mixed forest that defoliates during different two seasons yields a greater species diversity of myxomycete assemblage.  相似文献   

19.
Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≥0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≥0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha−1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher’s diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial > sandstone hill > kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities.  相似文献   

20.
The preferences of aquatic invertebrate species for specific substrata at the river bottom have been subject of many studies. Several authors classified the substratum preferences of species or higher taxonomic units. Most of these compilations, however, are based on literature analyses and expert knowledge as opposed to the analysis of original data. To enhance our knowledge of invertebrate substratum preferences, we applied a ‘Multi-level pattern’ analysis based on almost 1000 substrate-specific invertebrate samples. The samples were taken in 18 streams in Germany, the Netherlands and Austria, comprising a total of 40 sampling sites and equally covering lowland and mountain streams. The main objectives of our analysis were (I) to derive substratum preferences of taxa in lowland and mountain streams, (II) to compare the preferences with existing data and (III) to compare species substratum associations between lowland and mountain streams. Of the 290 taxa analyzed, 188 were associated significantly to specific substrata. Twenty-five taxa in lowland streams and 51 taxa in mountain streams prefer one or two substratum types (of nine substratum types considered in total). In contrast, 112 species (mountain streams n = 84, lowland streams n = 28) are associated significantly with a broader range of substrata. We compared the classifications derived from our data analysis with those provided in the freshwaterecology.info database (www.freshwaterecology.info). Our results support the existing classifications of substratum preferences in most cases (70%). For 25 species, substratum preferences for both lowland and mountain streams were derived, many of them indicating different substratum associations in the two stream groups. As substratum preferences differed between closely related species, preferences should always be given at the species level as opposed to coarser taxonomic units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号