首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cryobiology》2009,58(3):195-200
IntroductionHuman fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.MethodsHuman fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.ResultsThe addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.ConclusionThe inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

2.
The purpose of the present study was to clarify the possibility of a rapid cryopreservation for cell line Paesun by cooling in the range of 30–40 °C/min to vapor phase of −120 ∼-140 °C before immersion into liquid phase of liquid nitrogen using 10% Me2SO. After thawing, these cells were examined with assaying viability by trypan blue exclusion staining and survival by cloning in monolayer; the percentages of cell and colony recovery obtained in rapid cooling had a tendency to be lower than that by slow cooling of 1 °C/min but there were no significant differences between them. In addition, post-thaw cells were examined by assaying proliferation and susceptibility to virus lines; there were no significant differences between before and after cryopreservation. In conclusion, these findings indicate that Paesun can be successfully cryopreserved by the rapid cooling rate of 30 °C–40 °C/min.  相似文献   

3.
There is significant interest in designing a cryopreservation protocol for hematopoietic stem cells (HSC) which does not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant. Computer simulations that describe cellular osmotic responses during cooling and warming can be used to optimize the viability of cryopreserved HSC; however, a better understanding of cellular osmotic parameters is required for these simulations. As a model for HSC, the erythroleukemic human cell line TF-1 was used in this study. Simulations, based on the osmotic properties of TF-1 cells and on the solution properties of the intra- and extracellular compartments, were used to interpret cryoinjury associated with a two-step cryopreservation protocol. Calculated intracellular supercooling was used as an indicator of cryoinjury related to intracellular ice formation. Simulations were applied to the two-step cooling protocol (rapid cooling interrupted with a hold time) for TF-1 cells in the absence of Me2SO or other cryoprotectants and optimized by minimizing the indicator of cryoinjury. A comparison of simulations and experimental measurements of membrane integrity supports the concept that, for two-step cooling, increasing intracellular supercooling is the primary contributor to potential freezing injury due to the increase in the likelihood of intracellular ice formation. By calculating intracellular supercooling for each step separately and comparing these calculations with cell recovery data, it was demonstrated that it is not optimal simply to limit overall supercooling during two-step freezing procedures. More aptly, appropriate limitations of supercooling differ from the first step to the second step. This study also demonstrates why high cell recovery after cryopreservation could be achieved in the absence of traditional cryoprotectants.  相似文献   

4.
The cell culture ofAngelica gigas Nakai producing decursin derivatives and immunostimulating polysaccharides was preserved in liquid nitrogen after pre-freezing in a deep freezer at −70°C for 480 min. The effects of the cryoprotectant and pretreatment before cooling were investigated to obtain the optimal procedure for cyropreservation. When compared to mannitol, sorbitol, or NaCl with a similar osmotic pressure, 0.7M sucrose was found to be the best osmoticum for the cryopreservation ofA. gigias cells. In the pre-culture medium, the cells in the exponential growth phase showed the best post-freezing survival after cryopre-servation. A mixture of sucrose, glycerol, and DMSO was found to be an effective cryoprotectant and a higher concentration of the cryoprotectant provided better cell viability. When compared with the vitrification, the optimum cryopreservation method proposed in this study would seem to be more effective for the long-term storage of suspension cells. The highest relative cell viability established with the optimal procedure was 89%.  相似文献   

5.
Cryopreservation currently is the only method for long-term preservation of cellular viability and function for uses in cellular therapies. Characterizing the cryobiological response of a cell type is essential in the approach to designing and optimizing cryopreservation protocols. For cells used in therapies, there is significant interest in designing cryopreservation protocols that do not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant, since this cryoprotectant has been shown to have adverse effects on hematopoietic stem cell (HSC) transplant patients. This study characterized the cryobiological responses of the human erythroleukemic stem cell line TF-1, as a model for HSC. We measured the osmotic parameters of TF-1 cells, including the osmotically-inactive fraction, temperature-dependent membrane hydraulic conductivity and the membrane permeability to 1 M Me2SO. A two-step freezing procedure (interrupted rapid cooling with hold time) and a graded freezing procedure (interrupted slow cooling without hold time) were used to characterize TF-1 cell recovery during various phases of the cooling process. One outcome of these experiments was high recovery of TF-1 cells cryopreserved in the absence of traditional cryoprotectants. The results of this study of the cryobiology of TF-1 cells will be critical for future understanding of the cryobiology of HSC, and to the design of cryopreservation protocols with specific design criteria for applications in cellular therapies.  相似文献   

6.
BACKGROUND: Umbilical cord blood (UCB) is an important source of hematopoietic stem and progenitor cells (HSC/HPC) for the reconstitution of the hematopoietic system after clinical transplantation. Cryopreservation of these cells is critical for UCB banking and transplantation as well as for research applications by providing readily available specimens. The objective of this study was to optimize cryopreservation conditions for CD34+ HSC/HPC from UCB. METHODS: Cryopreservation of CD34+ HSC/HPC from UCB after mononuclear cell (MNC) preparation was tested in a research-scale setup. Experimental variations were concentration of the cryoprotectant, the protein additive and cell concentration. In addition, protocols involving slow, serial addition and removal of DMSO were compared with standard protocols (fast addition and removal of DMSO) in order to avoid osmotic stress for the cryopreserved cells. Viability and recoveries of MNC, CD34+ cells and total colony-forming units (CFU) were calculated as read-outs. In addition, sterility testing of the collected UCB units before further processing was performed. RESULTS: The optimal conditions for cryopreservation of CD34+ HPC in MNC preparations were 10% DMSO and 2% human albumin at high cell concentrations (5 x 10(7) MNC/mL) with fast addition and removal of DMSO. After cryopreservation using a computer-controlled freezer, high viabilities (89%) and recoveries for CD34+ cells (89%) as well as for CFU (88%) were observed. Microbial contamination of the collected UCB samples was reduced to a rate of 6.4%. DISCUSSION: Optimized cryopreservation conditions were developed for UCB MNC in respect of the composition of the cryosolution. In addition, our results showed that fast addition of DMSO is essential for improved cryopreservation and post-thaw quality assessment results, whereas the speed of DMSO removal after thawing has little influence on the recoveries of CD34+ cells and CFU.  相似文献   

7.
《Cryobiology》2016,73(3):191-197
Although primary neuronal cells are routinely used for neuroscience research, with potential clinical applications such as neuronal transplantation and tissue engineering, a gold standard protocol for preservation has not been yet developed. In the present work, a slow cooling methodology without ice seeding was studied and optimized for cryopreservation of rat cerebellar granular cells. Parameters such as cooling rate, plunge temperature and cryoprotective agent concentration were assessed using a custom built device based on Pye's freezer idea. Cryopreservation outcome was evaluated by post thawing cell viability/viable cell yield and in culture viability over a period of 14 days. The best outcome was achieved when 10% of Me2SO as cryoprotective agent, a cooling rate of 3.1 ± 0.2 °C/min and a plunge temperature of −48.2 ± 1.5 °C were applied. The granular cells cryopreserved under these conditions exhibited a cell viability of 82.7 ± 2.7% and a viable cell yield of 28.6 ± 2.2%. Moreover, cell viability in culture remained above 50%, very similar to not cryopreserved cells (control). Our results also suggest that post-thaw viability (based on membrane integrity assays) not necessarily reflects the quality of the cryopreservation procedure and proper functionality tests must be carried out in order to optimize both post thaw viability/cell yield and in culture performance.  相似文献   

8.
Different lines of cell suspension cultures of Taxus × media Rehd. and Taxus floridana Nutt. were cryopreserved with a two-step freezing method using a simple and inexpensive freezing container instead of a programmable freezer. Four to seven days old suspension cell cultures were precultured in growth medium supplemented with 0.5 M mannitol for 2 d. The medium was then replaced with cryoprotectant solution (1 M sucrose, 0.5 M glycerol and 0.5 M dimethylsulfoxide) and the cells incubated on ice for 1 h. Before being plunged into liquid nitrogen, cells were frozen with a cooling rate of approximately −1 °C per min to −80 °C. The highest post-thaw cell viability was 90 %. The recovery was line dependent. The cryopreservation procedure did not alter the nuclear DNA content of the cell lines. The results indicate that cryopreservation of Taxus cell suspension cultures using inexpensive freezing container is possible.  相似文献   

9.
Normal mouse marrow cells were frozen in an automatically controlled freezer at a cooling rate of 1 °C/min to ?40 °C and 7 °C/ min to ?100 °C using dimethylsulfoxide as a cryoprotective agent. The freezing solution contained in addition either 10% homologous serum or 10% fetal calf serum. Control samples were frozen with serum-free medium. After thawing, stepwise dilution, and washing, the cells were counted, checked for CFU-s content, and cultured in Millipore diffusion chambers for 2 and 7 days.HS resulted in a recovery of 59.7% nucleated cells and 100.5% CFU-s whereas FCS and serum-free medium resulted in 59.8 and 34.7% nucleated cells and 24.5 and 18.2% CFU-s, respectively. After 2 days of culture, D.C. data showed a correlation with the CFU-s results. After 7 days of culture, no significant difference was observed between the three groups. The results of these experiments indicate that HS is required for an optimal stem cell cryopreservation and that a 2-day D.C. culture is a reliable assay system for transplantable hemopoietic tissue.  相似文献   

10.
The conchocelis cells of four strains of Porphyra yezoensis Udea and four other Porphyra species were cryopreserved in liquid nitrogen (LN) using a programmable freezer or a simple prefreezing system, which consisted of a styrofoam box and a deep-freezer at ?40° C. The cells differed in their freezing tolerance but survived maximally when prefrozen to ?40° C in a cryoprotective solution composed of 10% dimethylsulfoxide and 0.5 M sorbitol in 50% seawater. The cryopreservation was successfully performed by applying the simple prefreezing system as well as by a programmable freezer. Conchocelis cells thawed from the LN temperature formed colonies and retained the ability to form conchospores that grew into gametophytic thalli. This technique using a simple prefreezing system will accelerate the spread of Porphyra cryopreservation.  相似文献   

11.
《Cryobiology》2016,72(3):486-492
Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding.  相似文献   

12.
Background aimsThe long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA).MethodsWe randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture.ResultsAn age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity.ConclusionsCryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34+ cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.  相似文献   

13.
【目的】针对去甲基万古霉素产生菌不耐保藏的问题,改进菌种保藏方法,对超低温液氮保藏、-80°C低温冷冻保藏、冷干保藏方法跟踪考察10年保藏稳定性,评价不同保藏方法对去甲基万古霉素产生菌的保藏适用性。【方法】采用甘油作基础保护剂进行超低温液氮保藏和-80°C低温冷冻保藏,采用脱脂牛奶作基础保护剂进行冷干保藏,针对超低温液氮保藏进行降温速率考察,研究非渗透性冷冻保护剂海藻糖、聚乙烯吡咯烷酮(PVP)等对3种保藏方法的冻存影响,对优选出的保藏方法进行10年跟踪考察。【结果】3种保藏方法冻后菌种存活率依次为:-80°C低温冷冻保藏超低温液氮保藏冷干保藏。液氮保藏最适降温速率为快速冷冻。优选出最佳保护剂配方:超低温液氮保藏为甘油8.0%,海藻糖3.5%;-80°C低温冷冻保藏为甘油6.0%,PVP 5.0%;冷干保藏为脱脂牛奶,6.0%海藻糖。采用优化保藏条件,液氮保藏10年存活率稳定在70.6%,菌种发酵水平为入藏水平的92.9%。【结论】在优化条件下,尤以超低温液氮保藏适合于去甲基万古霉素产生菌长期保藏。  相似文献   

14.
An apparatus has been constructed to cool biological material at a controlled rate. The material to be frozen is placed in glass ampuls which are immersed in an aluminum bath containing ethyl alcohol and the bath is placed inside a freezer cabinet. Liquid nitrogen is pumped intermittently into the cabinet by means of a single-speed electric pump. The rate of cooling is controlled by a device that varies the interval between successive pumping cycles. The temperature fall is monitored by thermocouples placed inside selected glass ampuls and recorded as a plot on moving graph paper.This simple instrument is capable of cooling at an accurately controlled rate over the range of 0 to 7 °C/min. We chose for our studies a cooling rate of 1 °C/min which we could maintain with an accuracy of ±0.1 °C. Temperature fluctuations were, however, observed at the freezing plateau and varied considerably in magnitude and temperature at onset even for the same material cooled under the same conditions. Mouse bone marrow cells frozen by our technique and stored for various periods of time may, on reconstitution, form colonies in vivo and in vitro identical in morphology and number to those from unfrozen control cells. Our results suggest that expensive and intricate devices may not be necessary to obtain optimal recovery of viable cells after storage in liquid nitrogen. The apparatus is now in regular use for the storage of human bone marrow cells intended for use in treatment of patients with leukemia refractory to conventional measures.  相似文献   

15.
Cryopreservation is the only long-term storage option for the storage of vessels and vascular constructs. However, endothelial barrier function is almost completely lost after cryopreservation in most established cryopreservation solutions. We here aimed to improve endothelial function after cryopreservation using the 2D-model of porcine aortic endothelial cell monolayers.?The monolayers were cryopreserved in cell culture medium or cold storage solutions based on the 4°C vascular preservation solution TiProtec®, all supplemented with 10% DMSO, using different temperature gradients. After short-term storage at ?80°C, monolayers were rapidly thawed and re-cultured in cell culture medium.?Thawing after cryopreservation in cell culture medium caused both immediate and delayed cell death, resulting in 11 ± 5% living cells after 24 h of re-culture. After cryopreservation in TiProtec and chloride-poor modifications thereof, the proportion of adherent viable cells was markedly increased compared to cryopreservation in cell culture medium (TiProtec: 38 ± 11%, modified TiProtec solutions ≥ 50%). Using these solutions, cells cryopreserved in a sub-confluent state were able to proliferate during re-culture. Mitochondrial fragmentation was observed in all solutions, but was partially reversible after cryopreservation in TiProtec and almost completely reversible in modified solutions within 3 h of re-culture. The superior protection of TiProtec and its modifications was apparent at all temperature gradients; however, best results were achieved with a cooling rate of ?1°C/min.?In conclusion, the use of TiProtec or modifications thereof as base solution for cryopreservation greatly improved cryopreservation results for endothelial monolayers in terms of survival and of monolayer and mitochondrial integrity.  相似文献   

16.
The two-step cooling procedure has been used to investigate factors involved in cell injury. Chinese hamster fibroblasts frozen in dimethylsulphoxide (5%, vv) were studied. Survival was measured using a cell colony assay and simultaneous observations of cellular shrinkage and the localization of intracellular ice were done by an ultrastructural examination of freeze-substituted samples.Correlations were obtained between survival and shrinkage at the holding temperature. However, cells shrunken at ?25 °C for 10 min (the optimal conditions for survival on rapid thawing from ?196 °C) contain intracellular ice nuclei at ?196 °C detectable by recrystallization. These ice nuclei only form below ?80 °C and prevent recovery on slow or interrupted thawing but not on rapid thawing. Cells shrunken at ?35 °C for 10 min (just above the temperature at which intracellular ice forms in the majority of rapidly cooled cells) can tolerate even slow thawing from ?196 °C, suggesting that they contain very few or no ice nuclei even in liquid nitrogen. Damage may correlate with the total amount of ice formed per cell rather than the size of individual crystals, and we suggest that injury occurs during rewarming and is osmotic in nature.  相似文献   

17.

Introduction

Human fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.

Methods

Human fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.

Results

The addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.

Conclusion

The inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

18.
The effect of cooling rate on recovery of human and murine hemopoietic precursor cells was studied. In the presence of 10% Me2SO, a cooling rate of 7 °C/min from ?4 to ?30 °C was optimal for recovery of both human and murine precursor cells which give rise to colonies in diffusion chambers implanted in mice (CFU-DG). Cooling of human marrow at a rate between 3 and 7 °C/min resulted in the best CFU-C recovery, although no good correlation between the cooling rate and murine CFU-C recovery was demonstrated. These data suggest that recovery of the primitive hemopoietic precursor cells can be improved by changing the standard cryopreservation programs used presently. However, improved recovery of CFU-DG does not necessarily translate into faster reconstitution of hemopoiesis. No significant difference was observed in overall recovery of bone marrow cellularity in lethally irradiated mice following injection of untreated marrow and marrow cooled at a rate of 1 and 7 °C/min.  相似文献   

19.
The optimal conditions were determined under which maximum survival of murine hematopoietic erythropoietin-responsive cells (ERC) could be ensured during manipulations required for cryopreservation. Cell survival was similar over freezing rates between 2 and 10 °C/min. Optimal cryoprotectants were 10% dimethyl sulfoxide (DMSO) and 20% fetal calf serum; the DMSO was removed by centrifugation after stepwise dilution with 20 vol of medium over a 10-min period. Differing thawing rates for the cell suspensions had minimal effects on survival. “Seeding” the cell suspensions with ice crystals had no effect on ERC recovery. Overall ERC survival varied between 20 and 40%. These results confirm earlier reports that certain ERC populations are more sensitive to damage during cryopreservation than are other hematopoietic progenitor cells.  相似文献   

20.
Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO), but at 37 °C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me2SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me2SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号