首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies.  相似文献   

2.
The current discussion about the relationships of higher arthropod taxa has led to a conflict between the traditional Tracheata (=Atelocerata) concept (hexapods united with myriapods), the Tetraconata concept (hexapods united with crustaceans, excluding myriapods), and the Paradoxopoda or Myriochelata concept (myriapods united with cheliceratans), with major contradictions between morphological and molecular data. We have analyzed a character set which apparently has completely vanished from the recent debate, namely the equipment of the trunk pleura of myriapods and insects with a characteristic set of concentric sclerites around the leg base and accompanying muscles. Based on the work of Heymons (1899) these sclerites were thought to be remains of the first appendage article, then denominated “subcoxa”. We have re-visited this old idea and show the arrangement of the much discussed pleural structures by SEM for the first time. Obviously a characteristic pattern of concentric pleural plates around the leg-base is present in all major myriapod taxa, including for the first time evidence for their presence in Progoneata. Because of their equal structure and orientation, the pleural sclerites present in entognathous and ectognathous insects may be derived from the same ground pattern. We conclude that the pleurites of Hexapoda and Myriapoda seem to be homologous structures, and there is evidence that the “subcoxa” of Tracheata is homologous with the coxa of crustaceans. Since no other arthropods show these sclerites, the transformation of the crustacean coxa to the pleural region in myriapods and insects is probably a synapomorphy congruent with the traditional Tracheata-hypothesis. Further investigations of recently published molecular work using the phylogenetic network software SplitsTree V.4 indicate that information content of several data sets is not convincing.  相似文献   

3.
从新疆哈密地区石城子北剖面7件样品获得分异度较高、有机质壁显著炭化保存的疑源类化石,根据其形态特征,共鉴定出14个形态属和15个形态种(其中8个未定种,3个比较种)。结合国内外古生代晚泥盆世已知疑源类组合进行比较,清楚表明当前获得的疑源类组合代表了晚泥盆世海洋微体浮游植物群面貌。我国涉及晚古生代疑源类生物地层的调查研究相对薄弱,而有关晚泥盆世疑源类化石的发现和报道更为匮乏,当前疑源类化石的发现,填补和丰富了新疆乃至国内晚泥盆世疑源类化石研究资料。该发现佐证了关于卡拉麦里洋在早石炭世闭合的认识;作为基础食物链的海洋微体浮游植物是重要成烃生物,晚泥盆世疑源类的保存预示研究区域具有石油、天然气勘察的前景。  相似文献   

4.
《Zoology (Jena, Germany)》2014,117(3):207-215
Recent molecular studies have indicated a close relationship between Crustacea and Hexapoda and postulated their unification into the Pancrustacea/Tetraconata clade. Certain molecular analyses have also suggested that the crustacean lineage, which includes the Branchiopoda, might be the sister group of Hexapoda. We test this hypothesis by analyzing the structure of the ovary and the ultrastructural features of oogenesis in two branchiopod species, Cyzicus tetracerus and Lynceus brachyurus, representing two separate orders, Spinicaudata and Laevicaudata, respectively. The female gonads of these species have not been investigated before. Here, we demonstrate that in both studied species the ovarian follicles develop inside characteristic ovarian protrusions and comprise a germline cyst surrounded by a simple somatic (follicular) epithelium, supported by a thin basal lamina. Each germline cyst consists of one oocyte and three supporting nurse cells, and the oocyte differentiates relatively late during ovarian follicle development. The synthesis of oocyte reserve materials involves rough endoplasmic reticulum and Golgi complexes. The follicular cells are penetrated by a complex canal system and there is no external epithelial sheath covering the ovarian follicles. The structure of the ovary and the ultrastructural characteristics of oogenesis are not only remarkably similar in both Cyzicus and Lynceus, but also share morphological similarities with Notostraca as well as the basal hexapods Campodeina and Collembola. Possible phylogenetic implications of these findings are discussed.  相似文献   

5.
Recent phylogenetic analyses using molecular data suggest that hexapods are more closely related to crustaceans than to myriapods, a result that conflicts with long-held morphology-based hypotheses. Here we contribute additional information to this debate by conducting phylogenetic analyses on two nuclear protein-encoding genes, elongation factor-1 alpha (EF-1 alpha) and the largest subunit of RNA polymerase II (Pol II), from an extensive sample of arthropod taxa. Results were obtained from two data sets. One data set comprised 1092 nucleotides (364 amino acids) of EF-1 alpha and 372 nucleotides (124 amino acids) of Pol II from 30 arthropods and three lobopods. The other data set contained the same EF-1 alpha fragment and an expanded 1038-nucleotide (346-amino-acid) sample of Pol II from 17 arthropod taxa. Results from maximum-parsimony and maximum-likelihood analyses strongly supported the existence of a Crustacea + Hexapoda clade (Pancrustacea) over a Myriapoda + Hexapoda clade (Atelocerata). The apparent incompatibility between the molecule-based Pancrustacea hypothesis and morphology-based Atelocerata hypothesis is discussed.  相似文献   

6.
Despite the advent of modern molecular and computational methods, the phylogeny of the four major arthropod groups (Chelicerata, Myriapoda, Crustacea and Hexapoda, including the insects) remains enigmatic. One particular challenge is the position of myriapods as either the closest relatives to chelicerates (Paradoxopoda/Myriochelata hypothesis), or to crustaceans and hexapods (Mandibulata hypothesis). While neither hypothesis receives conclusive support from molecular analyses, most morphological studies favour the Mandibulata concept, with the mandible being the most prominent feature of this group. Although no morphological evidence was initially available to support the Paradoxopoda hypothesis, a putative synapomorphy of chelicerates and myriapods has recently been put forward based on studies of neurogenesis. However, this and other morphological characters remain of limited use for phylogenetic systematics owing to the lack of data from an appropriate outgroup. Here, we show that several embryonic characters are synapomorphies uniting the chelicerates and myriapods, as revealed by an outgroup comparison with the Onychophora or velvet worms. Our findings, thus provide, to our knowledge, first morphological/embryological support for the monophyly of the Paradoxopoda and suggest that the mandible might have evolved twice within the arthropods.  相似文献   

7.
Recent molecular analyses indicate that crustaceans and hexapods form a clade (Pancrustacea or Tetraconata), but relationships among its constituent lineages, including monophyly of crustaceans, are controversial. Our phylogenetic analysis of three protein-coding nuclear genes from 62 arthropods and lobopods (Onychophora and Tardigrada) demonstrates that Hexapoda is most closely related to the crustaceans Branchiopoda (fairy shrimp, water fleas, etc.) and Cephalocarida + Remipedia, thereby making hexapods terrestrial crustaceans and the traditionally defined Crustacea paraphyletic. Additional findings are that Malacostraca (crabs, isopods, etc.) unites with Cirripedia (barnacles, etc.) and they, in turn, with Copepoda, making the traditional crustacean class Maxillopoda paraphyletic. Ostracoda (seed shrimp)--either all or a subgroup--is associated with Branchiura (fish lice) and likely to be basal to all other pancrustaceans. A Bayesian statistical (non-clock) estimate of divergence times suggests a Precambrian origin for Pancrustacea (600 Myr ago or more), which precedes the first unambiguous arthropod fossils by over 60 Myr.  相似文献   

8.
Elongation factor-2: a useful gene for arthropod phylogenetics.   总被引:13,自引:0,他引:13  
Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid data sets consistently recovered Myriapoda and major chelicerate groups with high bootstrap support. Crustacea + Hexapoda (= Pancrustacea) was recovered with moderate support, whereas the conflicting group Myriapoda + Hexapoda (= Atelocerata) was never recovered and bootstrap values were always <5%. With additional nonarthropod sequences included, one indel supports monophyly of Tardigrada, Onychophora, and Arthropoda relative to molluscan, annelidan, and mammalian outgroups. New and previously published sequences from RNA polymerase II (1038 nucleotides) and elongation factor-1alpha (1092 nucleotides) were analyzed for the same taxa. A comparison of bootstrap values from the three genes analyzed separately revealed widely varying values for some clades, although there was never strong support for conflicting groups. In combined analyses, there was strong bootstrap support for the generally accepted clades Arachnida, Arthropoda, Euchelicerata, Hexapoda, and Pycnogonida, and for Chelicerata, Myriapoda, and Pancrustacea, whose monophyly is more controversial. Recovery of some additional groups was fairly robust to method of analysis but bootstrap values were not high; these included Pancrustacea + Chelicerata, Hexapoda + Cephalocarida + Remipedia, Cephalocarida + Remipedia, and Malaocostraca + Cirripedia. Atelocerata (= Myriapoda + Hexapoda) was never recovered. Elongation factor-2 is now the second protein-encoding, nuclear gene (in addition to RNA polymerase II) to support Pancrustacea over Atelocerata. Atelocerata is widely cited in morphology-based analyses, and the discrepancy between results derived from molecular and morphological data deserves greater attention.  相似文献   

9.
Hexapoda have been traditionally seen as the closest relatives of the Myriapoda (Tracheata hypothesis) but molecular studies have challenged this hypothesis and rather have suggested a close relationship of hexapods and crustaceans (Tetraconata hypothesis). In this new debate, data on the structure and development of the arthropod nervous system contribute important new data ("neurophylogeny"). Neurophylogenetic studies have already provided several examples for individually identifiably neurons in the ventral nerve cord that are homologous between insects and crustaceans. In the present report, we have analysed the emergence of Engrailed-expressing cells in the embryonic brain of a parthenogenetic crayfish, the marbled crayfish (Marmorkrebs), and have compared our findings to the pattern previously reported from insects. Our data suggest that a group of six Engrailed-expressing neurons in the optic anlagen, the so-called secondary head spot cells can be homologised between crayfish and the grasshopper. In the grasshopper, these cells are supposed to be involved in establishing the primary axon scaffold of the brain. Our data provide the first example for a cluster of brain neurons that can be homologised between insects and crustaceans and show that even at the level of certain cell groups, brain structures are evolutionary conserved in these two groups.  相似文献   

10.
从泛甲壳动物新假说评述节肢动物系统进化的研究进展   总被引:8,自引:1,他引:7  
Giribet et al(2001)构建的节肢动物系统树中,将六足动物(昆虫)完全合并到甲壳动物之中,共同构成一个新的类群:泛甲壳动物(Pancrustacea)。这与近百年来经典的节肢动物系统发生概念有很大的不同。现拟重温上个世纪以来最主要的4个假说,简要评述节肢动物系统发生研究的近况,并给予展望。  相似文献   

11.
Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda + Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.  相似文献   

12.

Background

The phylogeny of Arthropoda is still a matter of harsh debate among systematists, and significant disagreement exists between morphological and molecular studies. In particular, while the taxon joining hexapods and crustaceans (the Pancrustacea) is now widely accepted among zoologists, the relationships among its basal lineages, and particularly the supposed reciprocal paraphyly of Crustacea and Hexapoda, continues to represent a challenge. Several genes, as well as different molecular markers, have been used to tackle this problem in molecular phylogenetic studies, with the mitochondrial DNA being one of the molecules of choice. In this study, we have assembled the largest data set available so far for Pancrustacea, consisting of 100 complete (or almost complete) sequences of mitochondrial genomes. After removal of unalignable sequence regions and highly rearranged genomes, we used nucleotide and inferred amino acid sequences of the 13 protein coding genes to reconstruct the phylogenetic relationships among major lineages of Pancrustacea. The analysis was performed with Bayesian inference, and for the amino acid sequences a new, Pancrustacea-specific, matrix of amino acid replacement was developed and used in this study.

Results

Two largely congruent trees were obtained from the analysis of nucleotide and amino acid datasets. In particular, the best tree obtained based on the new matrix of amino acid replacement (MtPan) was preferred over those obtained using previously available matrices (MtArt and MtRev) because of its higher likelihood score. The most remarkable result is the reciprocal paraphyly of Hexapoda and Crustacea, with some lineages of crustaceans (namely the Malacostraca, Cephalocarida and, possibly, the Branchiopoda) being more closely related to the Insecta s.s. (Ectognatha) than two orders of basal hexapods, Collembola and Diplura. Our results confirm that the mitochondrial genome, unlike analyses based on morphological data or nuclear genes, consistently supports the non monophyly of Hexapoda.

Conclusion

The finding of the reciprocal paraphyly of Hexapoda and Crustacea suggests an evolutionary scenario in which the acquisition of the hexapod condition may have occurred several times independently in lineages descending from different crustacean-like ancestors, possibly as a consequence of the process of terrestrialization. If this hypothesis was confirmed, we should therefore re-think our interpretation of the evolution of the Arthropoda, where terrestrialization may have led to the acquisition of similar anatomical features by convergence. At the same time, the disagreement between reconstructions based on morphological, nuclear and mitochondrial data sets seems to remain, despite the use of larger data sets and more powerful analytical methods.
  相似文献   

13.
In this paper we propose a reappraisal of the relationships between the basal hexapod lineages (the former 'apterygote' insects) and the other major groups of mandibulate arthropods. It results from a cladistic analysis including 72 characters based on external morphology, internal anatomy and development. Detailed comments are provided on the various characters used and the scoring of their states. The 35 terminal taxa include 12 hexapods (9 of which are basal 'apterygote' representatives), 7 myriapods, 13 crustaceans, and 3 chelicerates taken as outgroups. The results of our analyses are discussed in detail for each of the taxonomic groupings, and compared with those recently obtained by other authors using different approaches based on morphological, palaeontological, developmental or molecular sequence data. Our results support the monophyly of the Mandibulata, Crustacea, Atelocerata (Tracheata) and Hexapoda, but the assemblage of Myriapoda appears poorly supported. A close relationship between Crustacea and Hexapoda, as hypothesized by several authors, is not found in any of our analyses. Within Hexapoda, the Protura and the Collembola appear as independent clades, whereas the two unresolved dipluran taxa are grouped with the monophyletic Ectognatha (Archaeognatha, Zygentoma and Pterygota).  相似文献   

14.

Background  

A recent study on expression and function of the ortholog of the Drosophila collier (col) gene in various arthropods including insects, crustaceans and chelicerates suggested a de novo function of col in the development of the appendage-less intercalary segment of insects. However, this assumption was made on the background of the now widely-accepted Pancrustacea hypothesis that hexapods represent an in-group of the crustaceans. It was therefore assumed that the expression of col in myriapods would reflect the ancestral state like in crustaceans and chelicerates, i.e. absence from the premandibular/intercalary segment and hence no function in its formation.  相似文献   

15.
16.
Remipedes are a small and enigmatic group of crustaceans, first described only 30 years ago. Analyses of both morphological and molecular data have recently suggested a close relationship between Remipedia and Hexapoda. If true, the remipedes occupy an important position in pancrustacean evolution and may be pivotal for understanding the evolutionary history of crustaceans and hexapods. However, it is important to test this hypothesis using new data and new types of analytical approaches. Here, we assembled a phylogenomic data set of 131 taxa, incorporating newly generated 454 expressed sequence tag (EST) data from six species of crustaceans, representing five lineages (Remipedia, Laevicaudata, Spinicaudata, Ostracoda, and Malacostraca). This data set includes all crustacean species for which EST data are available (46 species), and our largest alignment encompasses 866,479 amino acid positions and 1,886 genes. A series of phylogenomic analyses was performed to evaluate pancrustacean relationships. We significantly improved the quality of our data for predicting putative orthologous genes and for generating data subsets by matrix reduction procedures, thereby improving the signal to noise ratio in the data. Eight different data sets were constructed, representing various combinations of orthologous genes, data subsets, and taxa. Our results demonstrate that the different ways to compile an initial data set of core orthologs and the selection of data subsets by matrix reduction can have marked effects on the reconstructed phylogenetic trees. Nonetheless, all eight data sets strongly support Pancrustacea with Remipedia as the sister group to Hexapoda. This is the first time that a sister group relationship of Remipedia and Hexapoda has been inferred using a comprehensive phylogenomic data set that is based on EST data. We also show that selecting data subsets with increased overall signal can help to identify and prevent artifacts in phylogenetic analyses.  相似文献   

17.
New collections of pyritized axes of the lycophyte Wexfordia hookense have been made from the Upper Devonian (uppermost Famennian) type locality at Sandeel Bay, County Wexford, in south-eastern Ireland. The specimens reveal additional histological features that permit reinterpretation of the morphology of this taxon and reevaluation of its taxonomic affinities. Wexfordia is shown to possess both secondary xylem, with narrow, uni- to biseriate rays, and periderm. The range of variation in relative amounts of primary and secondary xylem can be correlated with position in the mature plant. This evidence indicates that Wexfordia was a small tree rather than an herbaceous form. Fine structure of tracheids and additional anatomical features strongly support affinities with Carboniferous arborescent Isoetales, rather than Devonian Protolepidodendrales, and further support the hypothesis that radiation in this lineage was well underway prior to the Carboniferous.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 275–287.  相似文献   

18.
Recent discoveries of previously unknown fossil forms have dramatically transformed understanding of many aspects of the fish-tetrapod transition. Newer paleobiological approaches have also contributed to changed views of which animals were involved and when, where, and how the transition occurred. This review summarizes major advances made and reevaluates alternative interpretations of important parts of the evidence. We begin with general issues and concepts, including limitations of the Paleozoic fossil record. We summarize important features of paleoclimates, paleoenvironments, paleobiogeography, and taphonomy. We then review the history of Devonian tetrapods and their closest stem group ancestors within the sarcopterygian fishes. It is now widely accepted that the first tetrapods arose from advanced tetrapodomorph stock (the elpistostegalids) in the Late Devonian, probably in Euramerica. However, truly terrestrial forms did not emerge until much later, in geographically far-flung regions, in the Lower Carboniferous. The complete transition occurred over about 25 million years; definitive emergences onto land took place during the most recent 5 million years. The sequence of character acquisition during the transition can be seen as a five-step process involving: (1) higher osteichthyan (tetrapodomorph) diversification in the Middle Devonian (beginning about 380 million years ago [mya]), (2) the emergence of "prototetrapods" (e.g., Elginerpeton) in the Frasnian stage (about 372 mya), (3) the appearance of aquatic tetrapods (e.g., Acanthostega) sometime in the early to mid-Famennian (about 360 mya), (4) the appearance of "eutetrapods" (e.g., Tulerpeton) at the very end of the Devonian period (about 358 mya), and (5) the first truly terrestrial tetrapods (e.g., Pederpes) in the Lower Carboniferous (about 340 mya). We discuss each of these steps with respect to inferred functional utility of acquired character sets. Dissociated heterochrony is seen as the most likely process for the evolutionarily rapid morphological transformations required. Developmental biological processes, including paedomorphosis, played important roles. We conclude with a discussion of phylogenetic interpretations of the evidence.  相似文献   

19.
This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans, as is widely claimed, but grouped instead with an euphausiacean (krill). Within centipedes, Craterostigmus was the sister to all other pleurostigmophorans, contrary to the consensus view. Our trees also united myriapods (millipedes and centipedes) with chelicerates (horseshoe crabs, spiders, scorpions, and relatives) and united pycnogonids (sea spiders) with chelicerates, but with much less support than in the previous rRNA-gene study. Finally, kinorhynchs joined priapulans (penis worms) at the base of Ecdysozoa.  相似文献   

20.
Arthropoda is comprised of four major taxa: Hexapoda, Crustacea, Myriapoda and Chelicerata. Although this classification is widely accepted, there is still some debate about the internal relationships of these groups. In particular, the phylogenetic position of Collembola remains enigmatic. Some molecular studies place Collembola into a close relationship to Protura and Diplura within the monophyletic Hexapoda, but this placement is not universally accepted, as Collembola is also regarded as either the sister group to Branchiopoda (a crustacean taxon) or to Pancrustacea (crustaceans + hexapods). To contribute to the current debate on the phylogenetic position of Collembola, we examined the brains in three collembolan species: Folsomia candida, Protaphorura armata and Tetrodontophora bielanensis, using antennal backfills, series of semi-thin sections, and immunostaining technique with several antisera, in conjunction with confocal laser scanning microscopy and three-dimensional reconstructions. We identified several neuroanatomical structures in the collembolan brain, including a fan-shaped central body showing a columnar organization, a protocerebral bridge, one pair of antennal lobes with 20-30 spheroidal glomeruli each, and a structure, which we interpret as a simply organized mushroom body. The results of our neuroanatomical study are consistent with the phylogenetic position of Collembola within the Hexapoda and do not contradict the hypothesis of a close relationship of Collembola, Protura and Diplura.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号