首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subcutaneous transplantation of mesenchymal stromal cells (MSC) emerged as an alternative to intravenous administration because it avoids the pulmonary embolism and prolongs post‐transplantation lifetime. The goal of this study was to investigate the mechanisms by which these cells could affect remote organs. To this aim, murine bone marrow–derived MSC were subcutaneously transplanted in different anatomical regions and the survival and behaviour have been followed. The results showed that upon subcutaneous transplantation in mice, MSC formed multicellular aggregates and did not migrate significantly from the site of injection. Our data suggest an important role of hypoxia‐inducible signalling pathways in stimulating local angiogenesis and the ensuing modulation of the kinetics of circulating cytokines with putative protective effects at distant sites. These data expand the current understanding of cell behaviour after subcutaneous transplantation and contribute to the development of a non‐invasive cell‐based therapy for distant organ protection.  相似文献   

2.
The mesenchymal stromal cell contribution to homeostasis   总被引:1,自引:0,他引:1  
Adult mesenchymal stromal cells (MSCs) are undifferentiated multi-potent cells predominantly residing in the bone marrow (BM), but also present with similar but not identical features in many other tissues such as blood, placenta, dental pulp, and adipose tissue. MSCs have the potential to differentiate into multiple skeletal phenotypes like osteoblasts, chondrocytes, adipocytes, stromal cells, fibroblasts, and possibly tendons. MSCs differentiation potential, ex vivo expansion capacity, nurturing and immunomodulatory proficiencies oriented these versatile cells in several areas of ongoing clinical applications. However, the absence of MSC-specific markers for isolation and characterization together with the lack of a comprehensive view of the molecular pathways governing their particular biological properties, remains a primary obstacle to their research and application. In this review we discuss some areas of growing interest in MSCs biology: their contribution to the hematopoietic stem cell (HSC) niche, to regenerative medicine, their role in cancer and in therapy as delivery tools and their micro-RNA (miRNA) signatures. Despite rapid progress in the MSC field, it is generally thought that only a fraction of their full potential has been realized thus far.  相似文献   

3.
A 3-year-old girl with severe aplastic anemia (SAA) that was unresponsive to steroid, cyclosporine and filgrastim treatments received bone marrow (BM) mesenchymal stromal cells (MSC; 1.25 × 106/kg), granulocyte colony-stimulating factor (G-CSF)-mobilized BM and peripheral blood stem cell grafts from her father. Prior to stem cell transplantation, she had experienced repeated bacterial infections and received 44 blood transfusions during 8 months after diagnosis. The conditioning regimen consisted of fludarabine, cyclophosphamide and busulfan, and prophylaxis of acute graft-versus-host disease (GvHD) was performed by administration of anti-CD25 monoclonal antibody, cyclosporine A, methotrexate, mycophenolate mofetil and anti-thymocyte globulin. The patient achieved rapid hematopoietic engraftment of donor origin and no acute or chronic GvHD was observed. She is now alive with a good performance status, and the dose of cyclosporine A is being tapered. The novel regimen described here might be a suitable option for children with SAA who lack immediate access to HLA-matched sources.  相似文献   

4.
Diabetic nephropathy (DN) is a common microvascular complication of diabetes. We used a new DN model in tree shrews to validate the use of bone‐marrow mesenchymal stem cell (BM‐MSC) transplantation to treat DN. The DN tree shrew model was established by a high‐sugar and high‐fat diet and four injections of streptozotocin. 4',6‐Diamidino‐2‐phenylindole labelled BM‐MSCs were injected into tree shrews. The DN tree shrew model was successfully established. Blood glucose was significantly increased ( p < 0.01) during the entire experiment. DN tree shrews showed dyslipidemia, insulin resistance and increased 24‐h proteinuria. At 21 days after BM‐MSC transplantation, glucose and levels of triglycerides, total cholesterol and 24‐h urine volume were lower than in tree shrews with DN alone ( p < 0.01) but were still higher than control values ( p < 0.01). Levels of creatinine and urea nitrogen as well as 24‐h proteinuria were lower for DN tree shrews with BM‐MSCs transplantation than DN alone ( p < 0.05). High‐sugar and high‐fat diet combined with STZ injection can induce a tree shrew model of DN. BM‐MSCs injection can home to damaged kidneys and pancreas, for reduced 24‐h proteinuria and improved insulin resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
《Cytotherapy》2023,25(8):798-802
Background aimsThanks to their immunomodulatory, tissue-protective and regenerative properties, mesenchymal stromal cells (MSCs) are a promising approach for amyotrophic lateral sclerosis (ALS); however, trials are limited and few follow-up studies have been published. This post-hoc analysis aims to describe the potential long-term effects of MSCs in ALS, analyzing data from two phase 1 clinical trials in ALS patients conducted by our group in 2002 and 2006.MethodsWe conducted two consecutive phase 1 prospective, open, pilot clinical trials, enrolling a total of 19 ALS patients. We followed patients for the duration of the disease. For each patient, we used the European Network to Cure ALS (ENCALS) survival prediction model to retrospectively calculate the expected survival at diagnosis. We then compared the predicted disease duration with the observed survival, analyzing patients at a single-patient level.ResultsUsing the ENCALS model, we predicted short survival in one patient, intermediate survival in three patients, long survival in three patients and very long survival in 12 patients. The difference between predicted and observed survival for the whole group was significant and demonstrated a mean predicted survival of 70.79 months (standard deviation [SD], 27.53) and a mean observed survival of 118.8 months (SD, 89.26) (P = 0.016). Based on the monthly ALS Functional Rating Scale–Revised progression rate (median, 0.64/month), we considered 10 of 19 patients slow progressors and nine of 19 patients fast progressors. Of the slow progressors, eight of 10 (80%) had significantly increased disease duration compared with predicted, and only two (20%) had decreased estimated disease duration. By contrast, five of nine (55%) fast progressors had increased disease duration, whereas four (45%) had decreased disease duration. To date, four patients are still alive.ConclusionsThe current study represents the first very long-term analysis of survival as an effect of MSC focal transplantation in the central nervous system of ALS patients, demonstrating that MSC transplantation could potentially slow down ALS progression and improve survival. Due to the interindividual variability in clinical course, at the current state of our knowledge, we cannot generalize the results, but these data provide new insights for planning the next generation of efficacy MSC clinical trials in ALS.  相似文献   

7.
Heterogeneity of mesenchymal stromal cell preparations   总被引:1,自引:0,他引:1  
Ho AD  Wagner W  Franke W 《Cytotherapy》2008,10(4):320-330
As an archetype of human adult stem cells that can readily be harvested, enriched and expanded in vitro, mesenchymal stromal cells (MSC) have been reported to be of significance for regenerative medicine. The literature is replete with reports on their developmental potentials in pre-clinical model systems. Different preparative protocols have been shown to yield MSC-like cell cultures or even cell lines, from starting materials as diverse as bone marrow, fat tissue, fetal cord blood and peripheral blood. However, MSC are still ill-defined by physical, phenotypic and functional properties. The quality of preparations from different laboratories varies tremendously and the cell products are notoriously heterogeneous. The source and freshness of the starting material, culture media used, presence of animal sera, cytokines, cell density, number of passages upon culture, etc., all have a significant impact on the (1) cell type components and heterogeneity of the initial population, (2) differential expansion of specific subsets, with different potentials of the end products, and (3) long-term functional fate of MSC as well as other types of progenitor cells that are co-cultivated with them. Consequently, there is an urgent need for the development of reliable reagents, common guidelines and standards for MSC preparations and of precise molecular and cellular markers to define subpopulations with diverse pathways of differentiation and divergent potentials.  相似文献   

8.
Abstract Background aims. Multipotent mesenchymal stromal cells (MSC) secrete soluble factors that stimulate the surrounding microenvironment. Such paracrine effects might underlie the potential benefits of many stem cell therapies. We tested the hypothesis that MSC are able to enhance intrinsic cellular plasticity in the adult rat hippocampus. Methods. Rat bone marrow-derived MSC were labeled with very small superparamagnetic iron oxide particles (VSOP), which allowed for non-invasive graft localization by magnetic resonance imaging (MRI). Moreover, MSC were transduced with lentiviral vectors to express the green fluorescent protein (GFP). The effects of bilateral MSC transplantation on hippocampal cellular plasticity were assessed using the thymidine analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-iodo-2'-deoxyuridine (IdU). Behavioral testing was performed to examine the consequences of intrahippocampal MSC transplantation on locomotion, learning and memory, and anxiety-like and depression-like behavior. Results. We found that intrahippocampal transplantation of MSC resulted in enhanced neurogenesis despite short-term graft survival. In contrast, systemic administration of the selective serotonin re-uptake inhibitor citalopram increased cell survival but did not affect cell proliferation. Intrahippocampal transplantation of MSC did not impair behavioral functions in rats, but only citalopram exerted anti-depressant effects. Conclusions. This is the first study to examine the effects of intrahippocampal transplantation of allogeneic MSC on hippocampal structural plasticity and behavioral functions in rats combined with non-invasive cell tracking by MRI. We found that iron oxide nanoparticles can be used to detect transplanted MSC in the brain. Although graft survival was short, intrahippocampal transplantation of MSC resulted in long-term changes in hippocampal plasticity. Our results suggest that MSC can be used to stimulate adult neurogenesis.  相似文献   

9.
We address the issue of the potential for malignant transformation of cultured mesenchymal stromal cells (MSC) commonly used in clinical cell-therapy protocols and describe the culture conditions under which tumorigenesis is likely to be an extremely uncommon event.  相似文献   

10.
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post-spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post-SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti-inflammatory cytokines upon induction with the pro-inflammatory factors, TNF-α and IFN-γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC-macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague-Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post-injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post-SCI indicated that as few as 5 × 10(4) encapsulated hMSC yielded increased numbers of CD206-expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post-CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection.  相似文献   

11.
12.
13.
Cardiovascular diseases are the number one cause of death globally and are projected to remain the single leading cause of death. Treatment options abounds, although efficacy is limited. Recent studies attribute discrete and ephemeral benefits to adult stem cell therapies, indicating the urge to improve stem cell based–therapy. In this study, we show that priming mesenchymal stem cells (MSC) towards cardiomyogenic lineage enhances their beneficial effects in vivo as treatment option for acute phase myocardial infarction. MSC were primed using cardiomyogenic media for 4 days, after which peak expression of key cardiomyogenic genes are reached and protein expression of Cx‐43 and sarcomeric α‐actinin are observed. MSC and primed MSC (pMSC) were characterized in vitro and used to treat infarcted rats immediately after left anterior descending (LAD) occlusion. Echocardiography analysis indicated that MSC‐treated myocardium presented discrete improvement in function, but it also showed that pMSC treatment lead to superior beneficial results, compared with undifferentiated MSC. Seven days after cell injection, MSC and pMSC could still be detected in the myocardium. Connexin‐43 expression was quantified through immunoblotting, and was superior in pMSC, indicating that this could be a possible explanation for the superior performance of pMSC therapy.  相似文献   

14.
15.
《Cytotherapy》2014,16(8):1059-1072
Background aimsMesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration, have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse. However, every administration route has specific pros and cons.MethodsWe administrated human MSCs (hMSCs) in the cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was assayed by means of real-time polymerase chain reaction.ResultsWe provide evidence that this route of administration can exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13.ConclusionsOur results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the inflammatory response of the host.  相似文献   

16.
The cell surface proteome of human mesenchymal stromal cells   总被引:1,自引:0,他引:1  

Background

Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/Principal Findings

To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/Significance

Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号