首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
现在关于高糖高脂对胰腺β细胞的毒性机制已经有了明显的进展,但还不完全清楚。实际上,β细胞响应过量营养物质的过程是一个连续的过程,包括β细胞补偿和β细胞功能失调。在早期,β细胞应对高糖高脂的反应是一个积极主动的过程;而到后期,过量的糖脂会导致胰岛素分泌下降,削弱胰岛素基因表达量,并促进胰岛β细胞凋亡。最终对2型糖尿病的发展有促进作用。综述了近年来细胞水平和分子水平,在葡萄糖存在的条件下,脂肪酸对胰腺β细胞的损伤作用及其机制的研究进展,重在说明葡萄糖和脂肪酸在2型糖尿病发展中的共同作用。  相似文献   

2.
3.
4.
Nutrients, such as glucose and fatty acids, have a dual effect on pancreatic beta-cell function. Acute administration of high glucose concentrations to pancreatic beta-cells stimulates insulin secretion. In addition, short term exposure of this cell type to dietary fatty acids potentiates glucose-induced insulin release. On the other hand, long-term exposure to these nutrients causes impaired insulin secretion, characterized by elevated exocytosis at low concentrations of glucose and no response when glucose increases in the extracellular medium. In addition, other phenotypic changes are observed in these conditions. One major step in linking these phenotypic changes to the diabetic pathology has been the recognition of both glucose and fatty acids as key modulators of beta-cell gene expression. This could explain the adaptative response of the cell to sustained nutrient concentration. Once this phase is exhausted, the beta-cell becomes progressively unresponsive to glucose and this alteration is accompanied by the irreversible induction of apoptotic programs. The aim of this review is to present actual data concerning the development of the toxicity to the main nutrients glucose and fatty acids in the pancreatic beta-cell and to find a possible link to the development of type 2 diabetes.  相似文献   

5.
6.
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative--early phase, pulsatility--decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic beta-cells and to the death of 50 % of beta-cell by apoptosis (lipotoxicity).  相似文献   

7.
8.
In models of type 2 diabetes the expression of beta-cell genes is altered, but these changes have not fully explained the impairment in beta-cell function. We hypothesized that changes in beta-cell phenotype and global alterations in both carbohydrate and lipid pathways are likely to contribute to secretory abnormalities. Therefore, expression of genes involved in carbohydrate and lipid metabolism were analyzed in islets 4 weeks after 85-95% partial pancreatectomy (Px) when beta-cells have impaired glucose-induced insulin secretion and ATP synthesis. Px rats after 1 week developed mild to severe hyperglycemia that was stable for the next 3 weeks, whereas neither plasma triglyceride, non-esterified fatty acid, or islet triglyceride levels were altered. Expression of peroxisome proliferator-activated receptors (PPARs), with several target genes, were reciprocally regulated; PPARalpha was markedly reduced even at low level hyperglycemia, whereas PPARgamma was progressively increased with increasing hyperglycemia. Uncoupling protein 2 (UCP-2) was increased as were other genes barely expressed in sham islets including lactate dehydrogenase-A (LDH-A), lactate (monocarboxylate) transporters, glucose-6-phosphatase, fructose-1,6-bisphosphatase, 12-lipoxygenase, and cyclooxygenase 2. On the other hand, the expression of beta-cell-associated genes, insulin, and GLUT2 were decreased. Treating Px rats with phlorizin normalized hyperglycemia without effecting plasma fatty acids and reversed the changes in gene expression implicating the importance of hyperglycemia per se in the loss of beta-cell phenotype. In addition, parallel changes were observed in beta-cell-enriched tissue dissected by laser capture microdissection from the central core of islets. In conclusion, chronic hyperglycemia leads to a critical loss of beta-cell differentiation with altered expression of genes involved in multiple metabolic pathways diversionary to normal beta-cell glucose metabolism. This global maladaptation in gene expression at the time of increased secretory demand may contribute to the beta-cell dysfunction found in diabetes.  相似文献   

9.
Wang X  Zhou L  Shao L  Qian L  Fu X  Li G  Luo T  Gu Y  Li F  Li J  Zheng S  Luo M 《Life sciences》2007,81(2):160-165
Changes in AMP-activated protein kinase (AMPK) activity contribute to the regulation of insulin secretion. Troglitazone has been shown to lower serum insulin levels and protect beta cell function. The aim of the present study was to examine the effects of troglitazone on AMPK activity and insulin secretion in beta cells. Isolated rat islets and MIN6 cells were treated for a short (1 h) or a long time (20 h) with troglitazone. One-hour troglitazone treatment activated AMPK and inhibited both glucose-stimulated insulin secretion (GSIS) and the response of insulin secretion to combined stimuli of glucose and palmitate. Long (20 h) treatment with troglitazone caused a sustained phosphorylation of AMPK and acetyl-CoA carboxylase, and increased GSIS after withdrawal of the drug. This study provided evidence that troglitazone activated AMPK in beta cells. In addition to the insulin-sensitizing effects in peripheral tissues, troglitazone also directly inhibits insulin hypersecretion by the elevated glucose and fatty acids, and thus protects beta cells from glucolipotoxicity.  相似文献   

10.
11.
Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with insulin resistance in these mice, insulin administration reduced glucose levels by only 35% after 45 min, compared to 70% in control mice. In vivo, insulin-stimulated glucose uptake was decreased by almost 50% in fat and muscle tissues of the ped/pea-15 transgenic mice, accompanied by protein kinase Calpha activation and block of insulin induction of protein kinase Czeta. These changes persisted in isolated adipocytes from the transgenic mice and were rescued by the protein kinase C inhibitor bisindolylmaleimide. In addition to insulin resistance, ped/pea-15 transgenic mice showed a 70% reduction in insulin response to glucose loading. Stable overexpression of ped/pea-15 in the glucose-responsive MIN6 beta-cell line also caused protein kinase Calpha activation and a marked decline in glucose-stimulated insulin secretion. Antisense block of endogenous ped/pea-15 increased glucose sensitivity by 2.5-fold in these cells. Thus, in vivo, overexpression of ped/pea-15 may lead to diabetes by impairing insulin secretion in addition to insulin action.  相似文献   

12.
13.
Intrauterine growth restriction is associated with chronically elevated levels of serum fatty acids and reduced glucose-stimulated insulin secretion. Lipid metabolism in pancreatic beta cells is critical for the regulation of insulin secretion, and the chronic exposure to fatty acids results in higher palmitate oxidation rates and an altered insulin response to glucose. Using a rat model of isocaloric protein restriction, we examined whether pre- and postnatal protein malnutrition influences the properties of pancreatic islet carnitine palmitoyltransferase-1 (liver isoform, L-CPT-1), a rate-limiting enzyme that regulates fatty acid oxidation in mitochondria. The activity of L-CPT-1 in pancreatic islets increased in the low protein (LP), although the L-CPT-1 mRNA levels were unaffected by malnutrition. The susceptibility of enzyme to inhibition by malonyl-CoA was unaltered and the content of malonyl-CoA was reduced in LP cells. Because the mitochondrial oxidation of fatty acids is related to the altered expression of a number of genes encoding proteins involved in insulin secretion, the levels of expression of insulin and GLUT-2 mRNA were assessed. A reduced expression of both genes was observed in malnourished rats. These results provide further evidence that increased L-CPT-1 activity and changes in gene expression in pancreatic islets may be involved in the reduced insulin secretion seen in malnourished rats.  相似文献   

14.
15.
Thiazolidinediones are used to treat type 2 diabetes mellitus because they decrease plasma glucose, insulin, triglyceride, and fatty acid levels. Thiazolidinediones are agonists for peroxisome proliferator-activated receptor gamma, a nuclear receptor that is highly expressed in fat tissue. We identify glyceroneogenesis as a target of thiazolidinediones in cultured adipocytes and fat tissues of Wistar rats. The activation of glyceroneogenesis by thiazolidinediones occurs mainly in visceral fat, the same fat depot that is specifically implicated in the progression of obesity to type 2 diabetes. The increase in glyceroneogenesis is a result of the induction of its key enzyme, phosphoenolpyruvate carboxykinase, whose gene expression is peroxisome proliferator-activated receptor gamma-dependent in adipocytes. The main role of this metabolic pathway is to allow the re-esterification of fatty acids via a futile cycle in adipocytes, thus lowering fatty acid release into the plasma. The importance of such a fatty acid re-esterification process in the control of lipid homeostasis is highlighted by the existence of a second thiazolidinedione-induced pathway involving glycerol kinase. We show that glyceroneogenesis accounts for at least 75% of the whole thiazolidinedione effect. Because elevated plasma fatty acids promote insulin resistance, these results suggest that the glyceroneogenesis-dependent fatty acid-lowering effect of thiazolidinediones could be an essential aspect of the antidiabetic action of these drugs.  相似文献   

16.
High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.  相似文献   

17.
It is widely accepted that, in type 2 diabetes, elevated levels of free fatty acids and glucose contribute to a state of glucolipotoxicity in which β-cell function declines and, ultimately, cell viability is compromised. This suggests that β-cells do not readily tolerate chronic elevations in fatty acid levels. In vitro studies suggest, however, that β-cells respond differentially to long chain fatty acids, such that saturated species are lipotoxic whereas long chain mono-unsaturated fatty acids can provide cytoprotection. This difference does not appear to be mediated by a mutual metabolic antagonism between saturated and unsaturated species (although differential alterations in neutral lipid disposition may occur in response to these fatty acids) and the mechanisms remain unclear. This review summaries the current understanding of the actions of mono-unsaturated fatty acids in β-cells and highlights areas of controversy as well as key unresolved issues which require to be addressed.  相似文献   

18.
Uncoupling protein-2 (UCP2) regulates insulin secretion by controlling ATP levels in beta-cells. Although UCP2 deficiency improves glycemic control in mice, increased expression of UCP2 interferes with glucose-stimulated insulin secretion. These observations link UCP2 to beta-cell dysfunction in type 2 diabetes with a perplexing evolutionary role. We found higher residual serum insulin levels and blunted lipid metabolic responses in fasted ucp2(-/-) mice, supporting the concept that UCP2 evolved to suppress insulin effects and to accommodate the fuel switch to fatty acids during starvation. In the absence of UCP2, fasting initially promotes peripheral lipolysis and hepatic fat accumulation at less than expected rates but culminates in protracted steatosis, indicating diminished hepatic utilization and clearance of fatty acids. We conclude that UCP2-mediated control of insulin secretion is a physiologically relevant mechanism of the metabolic response to fasting.  相似文献   

19.
20.
Zhang P  Liu C  Zhang C  Zhang Y  Shen P  Zhang J  Zhang CY 《FEBS letters》2005,579(6):1446-1452
PGC-1alpha mRNA and protein are elevated in islets from multiple animal models of diabetes. Overexpression of PGC-1alpha impairs glucose-stimulated insulin secretion (GSIS). However, it is not well known which metabolic events lead to upregulation of PGC-1alpha in the beta-cells under pathophysiological condition. In present study, we have investigated effects of chronic hyperlipidemia and hyperglycemia on PGC-1alpha mRNA expression in isolated rat islets. Isolated rat islets are chronically incubated with 0, 0.2 and 0.4 mM oleic acid/palmitic acid (free fatty acids, FFA) or 5.5 and 25 mM glucose for 72 h. FFA dose-dependently increases PGC-1alpha mRNA expression level in isolated islets. FFA also increases PGC-1alpha expression in mouse beta-cell-derived beta TC3 cell line. In contrast, 25 mM glucose decreases expression level of PGC-1alpha. Inhibition of PGC-1alpha by siRNA improves FFA-induced impairment of GSIS in islets. These data suggest that hyperlipidemia and hyperglycemia regulate PGC-1alpha expression in islets differently, and elevated PGC-1alpha by FFA plays an important role in chronic hyperlipidemia-induced beta-cell dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号