首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

Our study had the objective to examine whether the number of forest vascular plants in a forest-poor region may be indicative of total plant species richness and of the number of threatened plant species. We also related forest plant species richness to geological and soil variables. The analysis was based on a regional flora atlas from the Weser-Elbe region in northwestern Germany including incidence data of species in a total of 1109 grid cells (each ca. 2.8 × 2.8 km2). All taxa were classified either as forest or non-forest species. Total species richness in the grid cells ranged from 65 to 597, with a mean value of 308. The number of forest species varied between 20 and 309 (mean 176). Grid cells with or without particular geological units differed in total and forest species richness, with those containing peatland and marshland being particularly species-poor. Indicator value analysis showed that both total and forest species richness in the grid cells were related to soil acidity and nitrogen in a hump-backed manner, with the highest number of species found at moderately low values for nitrogen and at intermediate values of pH. Forest species richness was highly positively correlated with the number of non-forest species and threatened non-forest species. Indicators for high species richness were primarily those species that are confined to closed semi-natural forests with a varied topography and relatively base- and nutrient-rich soils. Grid cells including historically ancient forest exhibited a higher species richness than grid cells lacking ancient forest, indicating the importance of a long habitat continuity for a high phytodiversity. The “habitat coincidence” of high species richness is best explained by similar responses of forest species and species of other habitats to the main environmental gradients. It is suggested that the regional patterns found for the Weser-Elbe region can be transferred also to other forest-poor regions in Central Europe.  相似文献   

3.
Patterns in species richness and endemism of European freshwater fish   总被引:4,自引:0,他引:4  
Aim  To analyse the patterns in species richness and endemism of the native European riverine fish fauna, in the light of the Messinian salinity crisis and the Last Glacial Maximum (LGM).
Location  European continent.
Methods  After gathering native fish faunistic lists of 406 hydrographical networks, we defined large biogeographical regions with homogenous fish fauna, based on a hierarchical cluster analysis. Then we analysed and compared the patterns in species richness and endemism among these regions, as well as species–area relationships.
Results  Among the 233 native species present in the data set, the Cyprinidae family was strongly dominant (> 50% of the total number of species). Seven biogeographical regions were defined: Western Peri-Mediterranea, Central Peri-Mediterranea, Eastern Peri-Mediterranea, Ponto-Caspian Europe, Northern Europe, Central Europe and Western Europe. The highest regional species richness was observed for Central Peri-Mediterranea and Ponto-Caspian Europe. The highest endemic richness was found in Central Peri-Mediterranea. Species–area relationships were characterized by high slope values for Peri-Mediterranean Europe and low values for Central and Western Europe.
Main conclusions  The results were in agreement with the 'Lago Mare' hypothesis explaining the specificity of Peri-Mediterranean fish fauna, as well as with the history of recolonization of Central and Western Europe from Ponto-Caspian Europe following the LGM. The results also agreed with the mechanisms of speciation and extinction influencing fish diversity in hydrographical networks. We advise the use of the seven biogeographical regions for further studies, and suggest considering Peri-Mediterranean Europe and Ponto-Caspian Europe as 'biodiversity hotspots' for European riverine fish.  相似文献   

4.
Measures of geodiversity may provide a potentially useful surrogate for biodiversity patterns in insufficiently surveyed areas. However, their reliability in modelling the spatial variation in species richness is inadequately understood. We investigated whether the explanatory and predictive power of species richness models can be improved by considering explicit measures of geodiversity (variability of earth surface materials, forms and processes) in addition to climate and topography variables. Vascular plant species richness was modelled in two study areas in Northern Europe, Finland at the resolution of 500 or 1000?m, and as a function of three geodiversity (geological, geomorphological and hydrological diversity) variables, and six climate and topography variables. Variation partitioning was used to identify the independent and shared contributions of the geodiversity, climate and topography variable groups in explaining the spatial patterns of species richness. Generalized additive models were used to explore the ability of the different explanatory variables in predicting plant species richness within and between the study areas. In both the study areas, the inclusion of measures of geodiversity improved the explanatory power, predictive ability and robustness of the plant species richness models. In conclusion, the explicit measures of geodiversity appear to be promising surrogates of biodiversity, which reflect important abiotic resource factors, and may thus provide an equally, or even more reliable basis for transferring biodiversity models to new areas than models based on climate and topography variables.  相似文献   

5.
We compiled herbarium specimen data to provide an improved characterization of geographic patterns of diversity using indices of species diversity and floristic similarity based on rarefaction principles. A dataset of 3650 georeferenced plant specimens belonging to Orchidaceae and Rubiaceae endemic to Atlantic Central Africa was assembled to assess species composition per half‐degree or one‐degree grid cells. Local diversity was measured by the expected number of species (Sk) per grid cell found in subsamples of increasing size and compared with raw species richness (SR). A nearly unbiased estimator of the effective number of species per grid cell was also used, allowing quantification of ratios of ‘true diversity’ between grid cells. Species turnover was measured using a presence/absence‐based similarity index (Sørensen) and an abundance‐based index that corrects for sampling bias (NNESS). Our results confirm that the coastal region of Cameroon is more diverse in endemic species than those more inland. The southern part of this coastal forest is, however, as diverse as the more intensively inventoried northern part, and should also be recognized as an important center of endemism. A strong congruence between Sørensen and NNESS similarity matrices lead to similar delimitations of floristic units. Hence, heterogeneous sampling seems to confer more bias when measuring patterns of local diversity using raw species richness than species turnover using Sørensen index. Overall, we argue that subsampling methods represent a useful way to assess diversity gradients using herbarium specimens while correcting for heterogeneous sampling effort. Abstract in French is available in the online version of this article.  相似文献   

6.
The research was focused on identification of plant diversity assessment approach which would be suitable for flowing waters. Moreover, the study attempted to estimate the extent of the survey (sampling effort) needed for detection of full plant diversity in river ecosystems. The analysed data were collected in a botanical survey carried out on the lowland sandy bottom Wel river, which is a very common river type in Europe. The Chao method of estimation of total species richness of macrophytes and Hill numbers were used to estimate the diversity based on very common plants (inverse Simpson index) as well as frequent species (Shannon index) and also including rare species (species richness). The analysis showed that using standard macrophyte survey approach for rivers, it is relatively easy to record abundant plants, but it is not possible to detect all species, because many aquatic macrophytes occur with low frequency and abundance requiring enormous sampling effort to detect all of them. It exceeds capabilities of most scientific projects. To improve the accuracy of diversity estimation, the rarefaction and extrapolation method was recommended. This method can reduce the bias in diversity estimates based on limited observational data, and thus limit inaccurate conclusions and subsequent wrong decisions in the conservation frameworks related to freshwater protection.  相似文献   

7.
Monographic data rely on specimens deposited in herbaria and museums, which have been thoroughly revised by experts. However, monographic data have been rarely used to map species richness at large scale, mainly because of the difficulties caused by spatially heterogeneous sampling effort. In this paper we estimate patterns of species richness and narrow endemism, based on monographic data of 4,055 Neotropical angiosperm species. We propose a geometric interpolation method to derive species ranges at a 1° grid resolution. To this we apply an inverse distance-weighted summation scheme to derive maps of species richness and endemism. In the latter we also adjust for heterogeneous sampling effort. Finally, we test the robustness of the interpolated species ranges and derived species richness by applying the same method but using a leave-one-out-cross-validation (LOOCV). The derived map shows four distinct regions of elevated species richness: (1) Central America, (2) the Northern Andes, (3) Amazonia and (4) the Brazilian Atlantic coast (‘Mata Atlantica’). The region with the highest estimated species richness is Amazonia, with Central America following closely behind. Centers of narrow endemism are located over the entire Neotropics, several of them coinciding with regions of elevated species richness. Sampling effort has a minor influence on the interpolation of overall species richness, but it substantially influences the estimation of regions of narrow endemism. Thus, in order to improve maps of narrow endemism and resulting conservation efforts, more collection and identification activity is required.  相似文献   

8.
Large‐scale biodiversity maps are essential to macroecology. However, between‐region comparisons can be more useful if patterns of observed species richness are supplemented by variations in dark diversity – the absent portion of the species pool. We aim to quantify and map plant diversity across Europe by using a measure that accounts for both observed and dark diversity. To do this we need to delimit suitable species pools, and evaluate the potential and limitation of a large‐scale dataset. We used Atlas Florae Europaeae (ca 20% of European plant species mapped within 50 × 50 km grid cells) and defined for each grid cell several species pools by applying various geographical and environmental filters: geographic species pool (number of species within 500 km radius), biogeographic species pool (additionally incorporating species distribution patterns, i.e. dispersion fields), site‐specific species pool (additionally integrating environmental preferences of species based on species co‐occurrence). We integrated dark diversity and observed diversity at a relative scale to calculate the completeness of site diversity: logistic expression of observed and dark diversity. We tested whether our results are robust against regional variation in data availability. We used independent regional databases to test if Atlas Florae Europaeae is a representative subset of total species richness. Environmental filtering was the most influential determinant of species pool size with more species filtered out in southern Europe. Both observed and dark diversity adhered to the well‐known latitudinal gradient, but completeness of site diversity varied throughout Europe with no latitudinal trend. Dark diversity patterns were fairly insensitive to variations in regional sampling intensity. Atlas Florae Europaeae represented well the total variation in plant diversity. In summary, dark diversity and completeness of site diversity add valuable information to broad‐scale diversity patterns since observed diversity is expressed at a relative scale.  相似文献   

9.
Aim Species richness of insect herbivores feeding on exotic plants increases with abundance as well as range size of the host in the area of introduction. The formation of these herbivore assemblages requires a certain amount of time, and the richness of insect faunas should also increase with the length of time an exotic plant has been present in the introduced range. Location Central Europe. Methods We analysed the variation in species richness of leaf‐chewing Lepidoptera larvae and sap‐sucking Auchenorrhyncha (Hemiptera) associated with 103 exotic woody plant species in Germany in relation to time since introduction, range size, growth form (trees versus shrubs), biogeographical origin (distance from Central Europe) and taxonomic isolation of the host plant (presence or absence of a native congener in the introduced area). Results Using simple correlation analyses we found for Lepidoptera and Auchenorrhyncha that species richness increased with time since introduction of the host plant. For the Lepidoptera the increase of species richness with time since introduction remained significant even after removing the effects of all other independent variables. Main conclusions Our results provide some evidence that assemblages of insects on exotic plants do not reach saturation within a time scale of few hundred years. This contrasts with previous findings for crop plants.  相似文献   

10.
11.
Aim We deconstructed the mammal species richness pattern in Europe to assess the importance of large‐scale gradients in current macroclimate relative to biogeographic history, habitat heterogeneity and human influence (HHH variables) as richness determinants for total species, and for widespread and endemic species separately. Location Europe, west of 30° E. Methods We deconstructed total species richness (50‐km resolution) into its widespread and endemic species richness components. We used simultaneous autoregressive modelling (SAR) with information‐theoretic model selection and variation partitioning to assess the importance of macroclimate and HHH variables. The HHH variables included two historical factors, estimated by novel methodologies: (1) ice‐age‐driven dynamics, represented by accessibility to recolonization from hindcasting‐estimated glacial refugia, and (2) biogeographic peninsular dynamics, represented by distance to the entry region for the main European faunal source in western Asia. Results A large fraction of explained variation was shared between macroclimate and HHH in the SAR models. For total species richness, more variation could be uniquely attributed to macroclimate than to HHH, whereas for the deconstructed patterns (widespread and endemic species) the opposite was the case. Considering the individual factors, there was a strong peninsula effect on both widespread and endemic species richness but not on total richness. Main conclusions Both macroclimate and HHH variables (history, habitat heterogeneity and human influence) proved important predictors of species richness, but also difficult to disentangle. Notably, biogeographic history, in particular peninsular dynamics, is an important determinant of widespread and endemic species richness.  相似文献   

12.
Species richness, area and climate correlates   总被引:4,自引:0,他引:4  
Aim Species richness–area theory predicts that more species should be found if one samples a larger area. To avoid biases from comparing species richness in areas of very different sizes, area is often controlled by counting the numbers of co‐occupying species in near‐equal area grid cells. The assumption is that variation in grid cell size accrued from working in a three‐dimensional world is negligible. Here we provide a first test of this idea. We measure the surface area of c. 50 × 50 km and c. 220 × 220 km grid cells across western Europe. We then ask how variation in the area of grid cells affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8–3311 km2; 220 × 220: 193–55,100 km2), but this did not affect the selection of variables in the models. Similarly, the predictive accuracy was affected only marginally by exclusion of area within models developed at the c. 50 × 50 km grid cells, although predictive accuracy suffered greater reductions when area was not included as a covariate in models developed for c. 220 × 220 km grid cells. Main conclusions Our results support the assumption that variation in near‐equal area cells may be of second‐order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent on this particular data set, grain and extent of the analyses, and more empirical work is required.  相似文献   

13.
Both human-related and natural factors can affect the establishment and distribution of exotic species. Understanding the relative role of the different factors has important scientific and applied implications. Here, we examined the relative effect of human-related and natural factors in determining the richness of exotic bird species established across Europe. Using hierarchical partitioning, which controls for covariation among factors, we show that the most important factor is the human-related community-level propagule pressure (the number of exotic species introduced), which is often not included in invasion studies due to the lack of information for this early stage in the invasion process. Another, though less important, factor was the human footprint (an index that includes human population size, land use and infrastructure). Biotic and abiotic factors of the environment were of minor importance in shaping the number of established birds when tested at a European extent using 50 x 50 km2 grid squares. We provide, to our knowledge, the first map of the distribution of exotic bird richness in Europe. The richest hotspot of established exotic birds is located in southeastern England, followed by areas in Belgium and The Netherlands. Community-level propagule pressure remains the major factor shaping the distribution of exotic birds also when tested for the UK separately. Thus, studies examining the patterns of establishment should aim at collecting the crucial and hard-to-find information on community-level propagule pressure or develop reliable surrogates for estimating this factor. Allowing future introductions of exotic birds into Europe should be reconsidered carefully, as the number of introduced species is basically the main factor that determines the number established.  相似文献   

14.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

15.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

16.
Aim To evaluate the relative importance of water–energy, land‐cover, environmental heterogeneity and spatial variables on the regional distribution of Red‐Listed and common vascular plant species richness. Location Trento Province (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided regularly into 228 3′ × 5′ quadrants. Methods Data from a floristic inventory were separated into two subsets, representing Red‐Listed and common (i.e. all except Red‐Listed) plant species richness. Both subsets were separately related to water–energy, land‐cover and environmental heterogeneity variables. We simultaneously applied ordinary least squares regression with variation partitioning and hierarchical partitioning, attempting to identify the most important factors controlling species richness. We combined the analysis of environmental variables with a trend surface analysis and a spatial autocorrelation analysis. Results At the regional scale, plant species richness of both Red‐Listed and common species was primarily related to energy availability and land cover, whereas environmental heterogeneity had a lesser effect. The greatest number of species of both subsets was found in quadrants with the largest energy availability and the greatest degree of urbanization. These findings suggest that the elevation range within our study region imposes an energy‐driven control on the distribution of species richness, which resembles that of the broader latitude gradient. Overall, the two species subsets had similar trends concerning the relative importance of water–energy, land cover and environmental heterogeneity, showing a few differences regarding the selection of some predictors of secondary importance. The incorporation of spatial variables did not improve the explanatory power of the environmental models and the high original spatial autocorrelation in the response variables was reduced drastically by including the selected environmental variables. Main conclusions Water–energy and land cover showed significant pure effects in explaining plant species richness, indicating that climate and land cover should both be included as explanatory variables in modelling species richness in human‐affected landscapes. However, the high degree of shared variation between the two groups made the relative effects difficult to separate. The relatively low range of variation in the environmental heterogeneity variables within our sampling domain might have caused the low importance of this complex factor.  相似文献   

17.
Aim To determine relative effects of habitat type, climate and spatial pattern on species richness and composition of native and alien plant assemblages in central European cities. Location Central Europe, Belgium and the Netherlands. Methods The diversity of native and alien flora was analysed in 32 cities. In each city, plant species were recorded in seven 1‐ha plots that represented seven urban habitat types with specific disturbance regimes. Plants were classified into native species, archaeophytes (introduced before ad 1500) and neophytes (introduced later). Two sets of explanatory variables were obtained for each city: climatic data and all‐scale spatial variables generated by analysis of principal coordinates of neighbour matrices. For each group of species, the effect of habitat type, climate and spatial variables on variation in species composition was determined by variation partitioning. Responses of individual plant species to climatic variables were tested using a set of binomial regression models. Effects of climatic variables on the proportion of alien species were determined by linear regression. Results In all cities, 562 native plant species, 188 archaeophytes and 386 neophytes were recorded. Proportions of alien species varied among urban habitats. The proportion of native species decreased with increasing range and mean annual temperature, and increased with increasing precipitation. In contrast, proportions of archaeophytes and neophytes increased with mean annual temperature. However, spatial pattern explained a larger proportion of variation in species composition of the urban flora than climate. Archaeophytes were more uniformly distributed across the studied cities than the native species and neophytes. Urban habitats rich in native species also tended to be rich in archaeophytes and neophytes. Main conclusions Species richness and composition of central European urban floras are significantly affected by urban habitat types, climate and spatial pattern. Native species, archaeophytes and neophytes differ in their response to these factors.  相似文献   

18.
外来物种入侵严重威胁着乡土植物多样性并削弱了生态系统服务功能。本文基于滇西北怒江河谷植被调查的样方数据, 从群落水平研究了乡土和入侵植物多样性的空间分布格局, 以及地形、气候、人类干扰等因子对两种格局的影响。本研究共记录到外来入侵植物26种, 隶属于13科21属; 乡土植物1,145种, 分属于158科628属。沿着怒江河谷, 入侵植物物种丰富度随纬度与海拔的增加而减少; 乡土物种丰富度则随纬度增加而增加, 并在海拔梯度上呈单峰格局。运用广义线性模型分析公路边缘效应(反映生境干扰)、气候、地形和土壤等环境因素对物种丰富度分布格局的影响。等级方差分离的结果显示, 公路两侧的生境干扰对入侵种和乡土种的丰富度格局均具有首要影响。在自然环境因子中, 降水量是入侵植物丰富度的主要限制因子, 而乡土物种丰富度则主要受到地形因子尤其是坡向的影响。结构方程模型的分析结果也表明, 乡土植物和入侵植物丰富度之间的负相关关系反映了二者对环境响应的差异。本文结果支持物种入侵的资源可利用性限制假说, 并强调了人类活动对生物多样性的负面影响; 乡土植物或已较好地适应了干旱河谷气候, 但并没有显示出对外来物种入侵的抵抗作用。  相似文献   

19.
Using species and environmental data from an extensive grassland area in south-western Finland, we investigated the effect of patch area and connectivity, management and local habitat variables on the occurrence of spring-flowering vascular plants and their richness in boreal agricultural landscapes. Generalized linear models (GLM) and variation partitioning were used to study the explanatory power of the three groups of variables and their combined contributions on the richness and occurrence of six spring-flowering plant species. Generalized additive models (GAMs) and associated cross-validation tests were used to evaluate the predictability of the species occurrence and richness patterns. Present-day grassland patch area and connectivity were important predictors for occurrence and richness of the studied plant species. In addition, local habitat factors, especially radiation, accounted for major fractions of occurrence patterns of the studied species. Hybrid models including variables from all three variable groups had higher explanatory power and predictive capability than partial models. However, performance of the separate single-species models varied considerably between the six study species. Exclusion of radiation or connectivity from the hybrid models decreased their predictive performance, suggesting that these factors are of particular importance for grassland plant species at their northern range margins. When developing conservation and management planning for grassland plant species in Northern Europe, attention should be paid to well-connected networks of grassland patches including large, steeply-sloped patches with a favorable microclimate.  相似文献   

20.
Species data from 249 National Nature Reserves in China were used to identify potential underlying drivers of latitudinal gradients in plant diversity. We used generalized linear models to assess correlations between predictor and plant species richness. Variance partitioning was then used to decompose the variation in plant richness into different taxonomic levels among the three groups of predictors (i.e., climate, habitat and animal). We found that species richness showed significant latitudinal trends in richness (p?<?0.001). This remained true when examining gymnosperms, angiosperms and ferns individually. Climate and habitat variables explained more variation in richness across different plant groups than did animal richness. Annual precipitation was the best climate variable across different taxonomic plants groups, and soil pH and elevation range were the best habitat variables across different taxonomic plant groups. The independent effects of habitat variables were higher than that of climate and animal variables across different taxonomic plant groups. Finally, climate, habitat heterogeneity, and animal richness explain 48.8% of the variation in total species richness, 28.2% in gymnosperm richness, 44.2% in angiosperm richness, and 38.9% in fern richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号