首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用光镜和透射电镜技术研究山羊精子发生不同阶段各级生精细胞显微、超微结构及山羊精子分化成熟过程。结果表明:山羊精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精子细胞及变态精子阶段发育成成熟的精子。精原细胞期核呈椭圆形,染色质凝集成团分布于核质中,线粒体开始出现;精母细胞期有高尔基体分布;精子细胞经过核质浓缩、线粒体迁移等过程发育成成熟精子,成熟的山羊精子头部细长,核质高度浓缩,中段膨大,线粒体丰富。线粒体、中心粒对精子变态发生起重要作用,同时观察到头部与中段脱落的畸形精子。  相似文献   

2.
The general organization of the male genital system, the spermatogenesis and the sperm structure of the proturan Acerella muscorum have been described. At the apex of testis apical huge cells are present; their cytoplasm contains a conventional centriole, a large amount of dense material and several less electron-dense masses surrounded by mitochondria. Spermatocytes have normal centrioles and are interconnected by cytoplasmic bridges. Such bridges seem to be absent between spermatid cells and justify the lack of synchronization of cell maturation. Spermatids are almost globular cells with a spheroidal nucleus and a large mass of dense material corresponding to the centriole adjunct. Within this mass a centriole is preserved. Mitochondria of normal structure are located between the nucleus and the plasma membrane. The spermatids are surrounded by a thick membrane. No flagellar structure is formed. Sperm have a compact spheroidal nucleus, a large cap of centriole adjunct material within which a centriole is still visible. A layer of mitochondria is located over the nucleus. The cytoplasm is reduced in comparison to spermatids; many dense bodies are interspersed with sperm in the testicular lumen. The sperm are small, immotile cells of about 2.5-3 μm in diameter.  相似文献   

3.
Filimonova SA 《Tsitologiia》2005,47(5):417-425
The epithelial lining of testes in Anystis baccarum is glandular and produces a secretory product necessary to form spermatophores. The main stages of spermatogenesis occur in the lumen of the testis in groups of synchronously developing sister cells. Spermatogonia and late spermatids are encircled by glandular cells. Reorganization of developing spermatids is typical of the trombidiform mites and includes formation of the acrosomal complex, cytoplasm elimination, disappearance of the nuclear envelope and formation of invaginations of plasmalemma. The chromatin material condensation is not followed by the entire chromatin body formation. In mature spermatoza, dense chromatin strands (80b nm in diameter) lie along the cell in the peripheral layer of the cytoplasm. Mature spermatozoa lack axonema or any protrusions. A layer of microtubules, visible underneath the outer membrane, may serve for sperm movement in the female genital duct. The acrosomal complex consists of acromal granule, acrosomal filament and subacrosomal substance. This, as well as two aggregates of typical mitochondria, looks plesiomorphic.  相似文献   

4.
Summary Sequential cytological events in late spermatogenesis of Liza aurata were studied from the stage secondary spermatocytes to that of mature spermatozoa. Spermiogenesis involves preparatory morphological events followed by conspicuous modifications such as intracellular movements (diplosome and mitochondrion migration, spermatid lengthening, nuclear rotation) and structural changes (dense chromatin granules, increase in size of mitochondria, loss of cytoplasm). Mature spermatozoa, with a round nucleus and a pseudo-midpiece are of a primitive type, even compared with spermatozoa of other teleosts.  相似文献   

5.
The Astigmata, a large and variable group, is still a subject of taxonomic dispute. Particularly, their origin from ancestors of the lower oribatid mites (e.g., Malaconothroidea) seems well documented by many lines of evidence. The structure of spermatozoa has been successfully applied to phylogenetic investigations in many animal groups. The aim of our study was to provide new data on spermatozoon structure in Astigmata and to consider its appropriateness in phylogenetic studies. The study reveals information on spermatozoa in 17 species of Astigmata (11 species studied for the first time) extending our knowledge to 18 species (one species known only from the literature) representing 12 families and 7 superfamilies. Spermatozoa have the same basic structure in all species: cells are multiform and the chromatin forms thin threads embedded directly in the cytoplasm; the acrosome is absent. The cytoplasm in most species contains electron-dense lamellae, varying in both number and arrangement within the cell. In Sarcoptoidea, electron-dense tubules in contact with lamellae margins were also observed in Psoroptidae (Psoroptes equi), whereas in two representatives of Sarcoptidae (Notoedres cati and Sarcoptes scabiei), only electron-dense tubules were found. In two species, Canestrinia sellnicki (Canestrinioidea: Canestriniidae) and Scutulanyssus obscurus (Analgoidea: Pteronyssidae), neither lamellae nor tubules were present. The mitochondria in a spermatozoon are usually gathered at the cell periphery and their structure is usually modified to form so-called mitochondrial derivatives. The chromatin threads are an autapomorphy strongly supporting the monophyly of Astigmata. As spermatozoa vary considerably between species in Astigmata, we deduce that sperm structure may be useful for phylogenetic analyses within the group. Several conclusions concerning the affinities within Astigmata are presented. Spermatology seems to be unhelpful, however, in questions on the origin of Astigmata (particularly for Astigmata-Oribatida relationships), since their sperm do not possess synapomorphies with sperm of the remaining groups of Acariformes, i.e., Endeostigmata, Prostigmata, and Oribatida.  相似文献   

6.
Summary

Comparative data on the ultrastructure of spermiogenesis and spermatozoa of the Polyplacophora Acanthochitona crinita, Chaetopleura angulata and Callochiton septemvalvis are presented in this study. In contrast to what has been described for this and other classes of Mollusca, no acrosome is present in the spermatozoa of these Polyplacophora. The nucleus is extended by a long, thin apical point. In A. crinita and C. angulata the mitochondria are situated at the basal and lateral regions of the nucleus. They do not present a typical middle piece. These species present a pericentriolar process. In C. septemvalvis the mitochondria are situated at the base of the nucleus, surrounding the centrioles, which are orthogonally positioned in all species. The ultrastructural development during spermiogenesis is similar. In middle spermatids of A. crinita, the chromatin is arranged in fine filaments. In C. septemvalvis and C. angulata the chromatin filaments are thicker, forming coarse bands. In late spermatids elongation of the nucleus continues, it becomes rather electron-dense and the chromatin filaments are more condensed. Finally, the nucleus has a uniformly electron-dense appearance, with no signs of filamentous organization. Considering the ultrastructural modifications observed, the Polyplacophora spermatozoa could be included in a modified type.  相似文献   

7.
In this paper spermatogenesis and sperm ultrastructure of the cockle Anadara granosa are studied using transmission electron microscopy. The spermatocyte presents electron-dense vesicles and the arising axoneme that begins to form the flagellum. During spermatid differentiation, proacrosomal vesicles appear to migrate towards the presumptive anterior pole of the nucleus; eventually these vesicles become acrosome. The spermatozoon of Anadara granosa is of the primitive type. The acrosome, situated at the apex of the nucleus, is cap-shaped and deeply invaginated at the inner side. The spherical nucleus of the spermatozoon contains dense granular chromatin and shows invagination at the posterior poles. The centriole shows the classic nine triplets of microtubules. The middle piece consists of the centriolar complex surrounded by five giant mitochondria. It is shown that the ultrastructure of spermatozoa and spermiogenesis of Anadara granosa reveals a number of features that are common among bivalves. Received: 29 September 1998 / Received in revised form: 20 May 1999 / Accepted: 14 June 1999  相似文献   

8.
The process of spermatogenesis and spermiogenesis in the river sculpin,Cottus hangiongensis, was observed ultrastructurally. During spermatogenesis, some germinal cysts in the seminal lobules were found to contain spermatocytes, which were provided with irregularly shaped nuclei, doughnut-shaped mitochondria, and atypical intercellular bridges with multiple disk-like cisternae. In addition, many cysts containing binuclear spermatids were observed in the testis. Within the condensed chromatin of the paired nuclei of the aberrant spermatids, highly electron-dense granules occurred, becoming the core of successively developing chromatin globules. The chromatin globules increased in size, resulting in an enlargement of the paired nuclei. These cells were finally released from the cyst into the lumen of the seminal lobules and underwent further degeneration, thus appearing as characteristic ‘spermatid masses’ in the mature testes.  相似文献   

9.
10.
We studied the ultrastructure of spermatogenesis and spermatozoa in the northern quahaug, the clam Mercenaria mercenaria. Spermatogenetic cells gradually elongate. Mitochondria gradually fuse and increase in size and electron density. During spermatid differentiation, proacrosomal vesicles migrate towards the presumptive anterior pole of the nucleus and eventually form the acrosome. The spermatozoon of M. mercenaria is of a primitive type. It is composed of head, mid-piece, and tail. The acrosome shows a subacrosomal space with a short conical contour. The slightly curved nucleus of the spermatozoon contains fine-grained dense chromatin. The middle piece consists of a centriolar complex which is surrounded by four mitochondria. The flagellum has a standard “9 + 2” microtubular structure. The ultrastructure of spermatozoa and spermatogenesis of M. mercenaria shares a number of features with other species of the family Veneridae. M. mercenaria may be a suitable model species for further investigations into the mechanisms of spermatogenesis in the Bivalvia.  相似文献   

11.
The ultrastructural features of spermatogenesis were investigated in the hermaphroditic sea star Asterina minor. The primordial germ cells in the genital rachis contain small clusters of electron-dense material (nuage material) and a stack of annulate lamellae. They also have a flagellum and basal body complex situated close to the Golgi complex. After the development of the genital rachis into the ovotestis, spermatogenic cells increase in number and differentiation begins. Nuage material is observed in spermatogonia, but it gradually disappears in spermatocytes. The annulate lamellae do not exist beyond the early spermatogonial stage. By contrast, a flagellum and basal body complex are found throughout spermatogenesis. The Golgi-derived proacrosomal vesicles appear in the spermatocyte and coalesce to form an acrosomal vesicle in the early spermatid. The process of acrosome formation is as follows: (1) a lamella of endoplasmic reticulum (ER) continuous with the outer nuclear membrane encloses the posterior portion of the acrosomal vesicle; (2) the vesicle attaches to the cell membrane with its anterior portion; (3) periacrosomal material accumulates in the space between the acrosomal vesicle and the ER; (4) the nucleus proper changes its features to surround the acrosome; (5) amorphous, electron-dense material is deposited under the electron-dense disk; and (6) the nucleus forms a hollow opposite the electron-dense material.  相似文献   

12.
Two questions are of interest concerning the male reproductive system in Gordiida: (1) is the epithelium surrounding the testis continuous or discontinuous and (2) is the type of spermatozoon as described at the transmission electron-microscopical level for the two species of Gordius typical for all Gordiida? An examination of the South American species Pseudochordodes bedriagae has allowed us to add new information to this poorly studied phylum. Testicular tubes are large, filled with spermatozoa, and surrounded by a continuous epithelium. The epithelial cells that line the posterior testes occasionally overlap, and their cytoplasm is narrow and contains dense granules, abundant endoplasmic reticulum, and vesicles. The plasma membrane possesses microvilli with many filaments. This epithelium rests on a basement membrane. The spermatozoa in P. bedriagae resemble the known spermatozoa of two Gordius species but differ in presenting a uniform halo layer of less dense chromatin that surrounds the dense chromatin in the nucleus. The finding that a similar type of spermatozoa occurs in both genera (Pseudochordodes and Gordius) makes it likely that it is present in all other Gordiida and is therefore an autapomorphy of the Gordiida.  相似文献   

13.
Macropsobrycon uruguayanae is a small, inseminating characid (tetra) of the tribe Compsurini. Although spermatozoa can be found within the ovarian cavity close to oocytes, the exact moment of fertilization has not yet been determined. Spermatozoa have moderately elongate nuclei with electron-dense chromatin. During spermiogenesis, nuclear rotation takes place. Elongate mitochondria with lamellar cristae are found posterior to the nucleus. Centrioles are parallel to one another with the proximal centriole slightly anterior to the longer distal one. The anterior tip of the proximal centriole is located within a shallow nuclear fossa. Electron-dense spurs are associated within the anterior and posterior ends of the distal centriole. Striated centriolar rootlets radiate both anteriorly and posteriorly from the distal centriole. Nine longitudinal accessory microtubules surround the axoneme in the proximal flagellum. The flagellum has a typical 9 + 2 axoneme with no intratubular differentiation. Atypical spermatozoa are also found in the testicular lumen. These cells resemble spermatozoa in most aspects, except that their nuclei are variable in shape, with the granular chromatin less electron-dense than that seen in spermatozoa. The origin and function of these cells could not be determined. The specializations seen in the spermatozoa are discussed as possible adaptations related to the habit of insemination.  相似文献   

14.
The immature megaspore mother cell of Ginkgo biloba is essentially spherical and is surrounded by a thick, complex wall. A large nucleus occupies the central region of the cell, and the organelles appear to be randomly arranged in the cytoplasm. With approaching maturity and the onset of meiosis, the cell elongates in the direction of the ovular axis. An extensive system of ER develops at the micropylar pole of the cell during elongation, and the plastids and mitochondria migrate to the opposite or chalazal pole. The micropylar end of the mature megaspore mother cell is usually devoid of plastids and mitochondria, but these organelles are densely packed in the chalazal end of the cell below the nucleus. The dictyosomes and dense spherosome-like bodies do not show such polarity in their distribution. At meiosis I plastids and mitochondria are, as a rule, restricted to the chalazal dyad cell that is destined to produce the functional megaspore. The wall of the megaspore mother cell consists of a middle lamella which is irregularly thickened, an outer wall layer resembling the walls of the surrounding nutritive cells, and an inner layer resembling the middle lamella in appearance.  相似文献   

15.
The mature spermatozoa were described in the haploïd and diploïd males of Diadromus pulchellus Wesmeal (Hymenoptera : Ichneumonidae). Diploïd males produce spermatozoa, which do not seem to be different from those produced by haploïd males. The spermatozoon is about 100 μm long, and consists of a head, 0.8 μm in diameter, and a tail 0.3 μm in diameter. Its anterior part shows an acrosomal complex, including a perforatorium and a compact and electron-dense fusiform nucleus. The postnuclear region includes a longitudinal axoneme with 2 mitochondrial derivatives. The axoneme shows 2 typical central units, 9 peripheral doublet microtubules, 9 accessory internal tubules, and 9 external microtubules with dense contents. In the testes of diploïd males, a great number of abnormal spermatozoa were observed. These spermatozoa with degenerative structures are probably not implicated in egg fertilization.  相似文献   

16.
褶纹冠蚌精子发生的研究   总被引:11,自引:1,他引:11  
光镜和透射电镜研究结果表明:褶纹冠蚌精子发生是非同步的,精子发生经历了一系列重要的形态和结构变化,主要包括:核逐步延长、染色质浓缩、线粒体逐渐发达与融合、胞质消除以及鞭毛的形成。精原细胞胞质中含有许多致密的轴纤丝,它们后来形成鞭毛轴丝。精母细胞质中含有线粒体、中心粒、内质网和电子透明的囊泡。精细胞分化为4个时期。成熟精子属原始类型,由头部、中段和尾部三部分组成。多核结构和细胞间桥自始至终存在于精子  相似文献   

17.
The gametogenesis of Bryconops affinis was studied by light, transmission and scanning electron microscopy. The spermatogenesis is semi-cystic and spermatids are released into the lumen of seminiferous tubules, where spermiogenesis is completed. Spermatozoa have an ovoid head, a rudimentary middle piece with a small number of mitochondria and long flagellum (primitive spermatozoa). The Sertoli and Leydig cells show secretory activity during spermatogenesis. By the end of this phenomenon, the Sertoli cells phagocytize the residual spermatozoa, while the Leydig cells show involuted characteristics. With regard to the oogenesis process, the oocyte development was divided into four stages based on the cytological characteristics of the oocyte and its surrounding layers. Ultrastructural analysis revealed that the zona pellucida is formed during the previtellogenic stage. Specializations associated to the outer layer of the zona pellucida may be related to the egg's adherence to the substrata.  相似文献   

18.
Spermatogenesis in Lake Magadi tilapia (Alcolapia grahami), a cichlid fish endemic to the highly alkaline and saline Lake Magadi in Kenya, was evaluated using light and transmission electron microscopy. Spermatogenesis, typified by its three major phases (spermatocytogenesis, meiosis and spermiogenesis), was demonstrated by the presence of maturational spermatogenic cells namely spermatogonia, spermatocytes, spermatids and spermatozoa. Primary spermatogonia, the largest of all the germ cells, underwent a series of mitotic divisions producing primary spermatocytes, which then entered two consecutive meiotic divisions to produce secondary spermatocytes and spermatids. Spermatids, in turn, passed through three structurally distinct developmental stages typical of type-I spermiogenesis to yield typical primitive anacrosomal spermatozoa of the externally fertilizing type (aquasperm). The spermatozoon of this fish exhibited a spheroidal head with the nucleus containing highly electron-dense chromatin globules, a midpiece containing ten ovoid mitochondria arranged in two rows and a flagellum formed by the typical 9 + 2 microtubule axoneme. In addition, the midpiece, with no cytoplasmic sheath, appeared to end blindly distally in a lobe-like pattern around the flagellum; a feature that was unique and considered adaptive for the spermatozoon of this species to the harsh external environment. These observations show that the testis of A. grahami often undergoes active spermatogenesis despite the harsh environmental conditions to which it is exposed on a daily basis within the lake. Further, the spermiogenic features and spermatozoal ultrastructure appear to be characteristic of Cichlidae and, therefore, may be of phylogenetic significance.  相似文献   

19.
The spermatogenesis of the free‐living marine nematode Metachromadora itoi was studied with electron microscopy. Spermatocytes and early spermatids have no cytoplasmic components specific for nematodes, i.e. membranous organelles (MO) and fibrous bodies (FB). The late spermatids are subdivided into the residual body and the main cell body with a centrally located nucleus devoid of a nuclear envelope. A pair of 9 × 2 centrioles is associated with the nuclei of spermatids and spermatozoa. The nucleus of the mature spermatid is surrounded by a thick mass of radially arranged FB delimited externally by a discontinuous layer of mitochondria, which underlie a thin ectoplasm. Sperm development is accompanied by transfer of FB matter through the mitochondrion layer into the ectoplasm. The immature spermatozoa from the testis have the centrally located nucleus surrounded by a transparent halo with remnants of FB. The halo is delimited by a sphere of mitochondria that underlie the thick fibrous ectoplasm, a derivative of the FB. In the mature spermatozoa the ectoplasm is transformed into the prominent unpolarized pseudopod. The central nucleus is surrounded by a transparent halo and a sphere of mitochondria, which underlie the pseudopod. MO were not found throughout spermatogenesis. In general, spermatogenesis in M. itoi differs from that observed in many nematodes but resembles in some details the sperm development in some chromadorid and tylenchomorph nematodes. The phylogenetic importance of this sperm development is discussed.  相似文献   

20.
The morphology and ultrastructure of the male reproductive system of dwarfish males of the monoecious aphid species Glyphina betulae (subfamily Thelaxinae) and the heteroecious species Anoecia (Anoecia) corni (subfamily Anoeciinae) are described. The testicular follicle of these species has the form of a single sac, the proximal parts of the vasa deferentia are slightly (G. betulae) or strongly (A. (A.) corni) expanded, the accessory glands are sack-shaped, and in G. betulae asymmetric and strongly elongated, whereas the ejaculatory duct is short.In both species only mature spermatozoa have been found within the testicular follicles, i.e. the consecutive stages of spermatogenesis have not been observed in adult males. Our studies also show that the testicular follicle, vasa deferentia, accessory glands and ejaculatory duct are histologically very simple. They are composed of more-or-less flattened epithelium of a secretory type, and thin muscle fibres. The epithelial cells are rich in rough endoplasmic reticulum, mitochondria and small vacuoles. The vasa deferentia, especially in G. betulae, are filled with an electron-dense secretion which, as was shown by histochemical staining, contains proteins and polysaccharides. We suggest that the maximum secretory activity of these epithelial cells occurs, as does spermatogenesis, during larval stages, so that the short living adult males are immediately ready for copulation as in other aphids with normal-sized males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号