首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone tissue engineering shows good prospects for mandibular reconstruction. In recent studies, prefabricated tissue-engineered bone (PTEB) by recombinant human bone morphogenetic proteins (rhBMPs) applied in vivo has found to be an effective alternative for autologous bone grafts. However, the optimal time to transfer PTEB for mandibular reconstruction is still not elucidated. Thus, here in an animal experiment of rhesus monkey, the suitable transferring time for PTEB to reconstruct mandibular defects was evaluated by 99mTc-MDP SPECT/CT, and its value in monitoring orthotopic rhBMP-2 implants for mandibular reconstruction was also evaluated. The result of SPECT/CT showed higher 99mTc-MDP uptake, indicating osteoinductivity, in rhBMP-2 incorporated demineralized freeze-dried bone allograft (DFDBA) and coralline hydroxyapatite (CHA) implants than those without BMP stimulation. 99mTc-MDP uptake of rhBMP-2 implant peaked at 8 weeks following implantation while CT showed the density of these implants increased after 13 weeks’ prefabrication. Histology confirmed that mandibular defects were repaired successfully with PTEB or orthotopically rhBMP-2 incorporated CHA implants, in accordance with SPECT/CT findings. Collectively, data shows 99mTc-MDP SPECT/CT is a sensitive and noninvasive tool to monitor osteoinductivity and bone regeneration of PTEB and orthotopic implants. The PTEB achieved peak osteoinductivity and bone density at 8 to 13 weeks following ectopic implantation, which would serve as a recommendable time frame for its transfer to mandibular reconstruction.  相似文献   

2.
IntroductionStrategies for biological repair and regeneration of the intervertebral disc (IVD) by cell and tissue engineering are promising, but few have made it into a clinical setting. Recombinant human bone morphogenetic protein 7 (rhBMP-7) has been shown to stimulate matrix production by IVD cells in vitro and in vivo in animal models of induced IVD degeneration. The aim of this study was to determine the most effective dose of an intradiscal injection of rhBMP-7 in a spontaneous canine IVD degeneration model for translation into clinical application for patients with low back pain.MethodsCanine nucleus pulposus cells (NPCs) were cultured with rhBMP-7 to assess the anabolic effect of rhBMP-7 in vitro, and samples were evaluated for glycosaminoglycan (GAG) and DNA content, histology, and matrix-related gene expression. Three different dosages of rhBMP-7 (2.5 μg, 25 μg, and 250 μg) were injected in vivo into early degenerated IVDs of canines, which were followed up for six months by magnetic resonance imaging (T2-weighted images, T1rho and T2 maps). Post-mortem, the effects of rhBMP-7 were determined by radiography, computed tomography, and macroscopy, and by histological, biochemical (GAG, DNA, and collagen), and biomolecular analyses of IVD tissue.ResultsIn vitro, rhBMP-7 stimulated matrix production of canine NPCs as GAG deposition was enhanced, DNA content was maintained, and gene expression levels of ACAN and COL2A1 were significantly upregulated. Despite the wide dose range of rhBMP-7 (2.5 to 250 μg) administered in vivo, no regenerative effects were observed at the IVD level. Instead, extensive extradiscal bone formation was noticed after intradiscal injection of 25 μg and 250 μg of rhBMP-7.ConclusionsAn intradiscal bolus injection of 2.5 μg, 25 μg, and 250 μg rhBMP-7 showed no regenerative effects in a spontaneous canine IVD degeneration model. In contrast, intradiscal injection of 250 μg rhBMP-7, and to a lesser extent 25 μg rhBMP-7, resulted in extensive extradiscal bone formation, indicating that a bolus injection of rhBMP-7 alone cannot be used for treatment of IVD degeneration in human or canine patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0625-2) contains supplementary material, which is available to authorized users.  相似文献   

3.
Background and objective: The aim of the present study was to develop and examine a new non-invasive injectable graft for the repair of alveolar bone clefts using recombinant human bone morphogenetic protein-2 (rhBMP-2) encapsulated within injectable liposomal in situ gel (LIG).

Method: Different liposomal formulations loaded with rhBMP-2 were prepared, and the effects of the preparation methods and lipid content on the efficiency of rhBMP-2 encapsulation within the liposomes were studied. For the preparation of in situ gel, deacetylated gellan gum (DGG) was used, and the in vitro gelation characteristics of the gel were evaluated. In vivo pharmacokinetics and histology were also assessed. Critical size alveolar defects were surgically created in the maxillae of 30 New Zealand rabbits and treated with different injectable formulae, including rhBMP-2 liposomes and in situ gel (rhBMP-2-LIG).

Results: The results indicated that the prepared rhBMP-2-LIG prolonged the release and residence time of BMP-2 within rabbits for more than 7 days. Histomorphometric assessment showed 67% trabecular bone filling of the defects treated using this novel formula.

Conclusion: BMP-2-LIG is a promising delivery device for the repair of alveolar bone defects associated with cleft deformities.  相似文献   


4.
Bone morphogenetic protein-2 (BMP-2)-containing bone grafts are useful regenerative materials for oral and maxillofacial surgery; however, several in vitro and in vivo studies previously reported cancer progression-related adverse effects caused by BMP-2. In this study, by quantifying the rhBMP-2 content released from bone grafts, the rhBMP-2 concentration that did not show cytotoxicity in each cell line was determined and applied to the in vitro monoculture or coculture model in the invasion assay. Our results showed that 1 ng/ml rhBMP-2, while not affecting cancer cell viability, significantly increased the invasion ability of the cancer cells cocultured with fibroblasts. Cocultured medium with rhBMP-2 also contained increased levels of matrix metalloproteinases. rhBMP-2-treated cocultured fibroblasts did not show a prominent difference in mRNA expression profile. Some cytokines, however, were detected in the conditioned medium by a human cytokine antibody array. Among them, the cancer invasion-related factor CCL5 was quantified by ELISA. Interestingly, CCL5 neutralizing antibodies significantly reduced the invasion of oral cancer cells. In conclusion, our results suggest that 1 ng/ml rhBMP-2 may induce invasion of oral squamous cell carcinoma (OSCC) cells by CCL5 release in coculture models. Therefore, we propose that a careful clinical examination before the use of rhBMP-2-containing biomaterials is indispensable for using rhBMP-2 treatment to prevent cancer progression.  相似文献   

5.
《Cytotherapy》2014,16(12):1643-1655
Background aimsOsteoporosis (OP) is characterized by a reduction in bone quality, which is associated with inadequacies in bone marrow mesenchymal stromal cells (BMSCs). As an alternative cell source to BMSCs, adipose-derived stem cells (ASCs) have been investigated for bone repair because of their osteogenic potential and self-renewal capability. Nevertheless, whether autologous ASCs can be used to promote bone regeneration under osteoporotic conditions has not been elucidated.MethodsThe OP rabbit model was established by means of bilateral ovariectomy (OVX). Both BMSCs and ASCs were harvested from OVX rabbits and expanded in vitro. The effects of osteogenic-induced ASCs on the in vitro adipogenic and osteogenic capabilities of BMSCs were evaluated. Autologous ASCs were then encapsulated by calcium alginate gel and transplanted into the distal femurs of OVX rabbits (n = 12). Hydrogel without loading cells was injected into the contralateral femurs as a control. Animals were killed for investigation at 12 weeks after transplantation.ResultsOsteogenic-induced ASCs were able to promote osteogenesis and inhibit adipogenesis of osteoporotic BMSCs through activation of the bone morphogenetic protein 2/bone morphogenetic protein receptor type IB signal pathway. Local bone mineral density began to increase at 8 weeks after ASC transplantation (P < 0.05). At 12 weeks, micro–computed tomography and histological evaluation revealed more new bone formation in the cell-treated femurs than in the control group (P < 0.05).ConclusionsThis study demonstrated that ASCs could stimulate proliferation and osteogenic differentiation of BMSCs in vitro and enhance bone regeneration in vivo, which suggests that autologous osteogenic-induced ASCs might be useful to alleviate OP temporally.  相似文献   

6.
Craniofacial bone defects are observed in a variety of clinical situations, and their reconstructions require coordinated coupling between angiogenesis and osteogenesis. In this study, we explored the effects of cartilage oligomeric matrix protein-angiopoietin 1 (COMP-Ang1), a synthetic and soluble variant of angiopoietin 1, on bone morphogenetic protein 2 (BMP2)-induced cranial bone regeneration, and recruitment and osteogenic differentiation of perivascular pericytes. A critical-size calvarial defect was created in the C57BL/6 mouse and COMP-Ang1 and/or BMP2 proteins were delivered into the defects with absorbable collagen sponges. After 3 weeks, bone regeneration was evaluated using micro-computed tomography and histologic examination. Pericyte recruitment into the defects was examined using immunofluorescence staining with anti-NG2 and anti-CD31 antibodies. In vitro recruitment and osteoblastic differentiation of pericyte cells were assessed with Boyden chamber assay, staining of calcified nodules, RT-PCR and Western blot analyses. Combined administration of COMP-Ang1 and BMP2 synergistically enhanced bone repair along with the increased population of CD31 (an endothelial cell marker) and NG2 (a specific marker of pericyte) positive cells. In vitro cultures of pericytes consistently showed that pericyte infiltration into the membrane pore of Boyden chamber was more enhanced by the combination treatment. In addition, the combination further increased the osteoblast-specific gene expression, including bone sialoprotein (BSP), osteocalcin (OCN) and osterix (OSX), phosphorylation of Smad/1/5/8, and mineralized nodule formation. COMP-Ang1 can enhance BMP2-induced cranial bone regeneration with increased pericyte recruitment. Combined delivery of the proteins might be a therapeutic strategy to repair cranial bone damage.  相似文献   

7.
Geng J  Liu G  Peng F  Yang L  Cao J  Li Q  Chen F  Kong J  Pang R  Zhang C 《Cytotherapy》2012,14(7):877-886
Background aimsAdipose-derived stem cells (ADSC) have been considered as attractive candidates for the treatment of Duchenne muscular dystrophy (DMD), but the rate of ADSC myogenesis is very low. Myostatin (Mstn), a negative regulator of myogenesis, is known to be responsible for limiting skeletal muscle regeneration. Decorin could bind Mstn and deactivate it. Decorin has been shown to improve myogenic differentiation in mdx mice. We hypothesized that inhibition of Mstn by using decorin may ameliorate myogenic differentiation of ADSC.MethodsRat ADSC were transfected with the lentivirus-containing green fluorescence protein (GFP) and human decorin gene. The transfected ADSC were induced by 5-azacytidine (5-AzaC). The rates of myogenic differentiation and adipogenesis were detected. The transfected ADSC were injected into mdx mice and the expression of Mstn and decorin detected by Western blot. Dystrophin was detected after transfected ADSC transplantation by immunofluorescence staining and Western blot. Serum creatine kinase (CK) and histologic changes were also evaluated.ResultsThe optimal multiplicity of infection of ADSC was 10. Decorin improved muscle mass. In accordance with the increased muscle mass, dystrophin expression increased. Following the level of decorin increase, the Mstn expression decreased. Furthermore, serum CK and histologic changes in centrally nucleated fiber (CNF) decreased.ConclusionsImproved myogenic differentiation of ADSC was observed by using decorin. This process was probably the result of decorin inhibiting Mstn. A new method of DMD therapy combining Mstn inhibition (using decorin) and ADSC transplantation is probably feasible.  相似文献   

8.
Background aimsCombining biologic matrices is becoming a better choice to advance stem cell-based therapies. Platelet-rich plasma (PRP) is a biologic product of concentrated platelets and has been used to promote regeneration of peripheral nerves after injury. We examined whether PRP could induce rat bone marrow stromal cells (BMSCs) differentiation in vitro and whether a combination of BMSCs, PRP and brain-derived neurotrophic factor (BDNF) could provide additive therapeutic benefits in vivo after spinal cord injury (SCI).MethodsBMSCs and BDNF-secreting BMSCs (BDNF-BMSCs) were cultured with PRP for 7 days and 21 days, respectively, and neurofilament (NF)-200, glial fibrillary acidic protein (GFAP), microtubule-associated protein 2 (MAP2) and ribosomal protein S6 kinase (p70S6K) gene levels were assessed. After T10 hemi-section in 102 rats, 15-μL scaffolds (PRP alone, BMSCs, PRP/BMSCs, BDNF-BMSCs or PRP/BDNF-BMSCs) were transplanted into the lesion area, and real-time polymerase chain reaction, Western blot, immunohistochemistry and ultrastructural studies were performed.ResultsThe messenger RNA expression of NF-200, GFAP, MAP2 and p70S6K was promoted in BMSCs and BDNF-BMSCs after culture with PRP in vitro. BDNF levels were significantly higher in the injured spinal cord after implantation of BDNF-BMSCs. In the PRP/BDNF-BMSCs group at 8 weeks postoperatively, more GFAP was observed, with less accumulation of astrocytes at the graft-host interface. Rats that received PRP and BDNF-BMSC implants showed enhanced hind limb locomotor performance at 8 weeks postoperatively compared with control animals, with more axonal remyelination.ConclusionsA combined treatment comprising PRP and BDNF-overexpressing BMSCs produced beneficial effects in rats with regard to functional recovery after SCI through enhancing migration of astrocytes into the transplants and axonal remyelination.  相似文献   

9.
Kim A  Kim DH  Song HR  Kang WH  Kim HJ  Lim HC  Cho DW  Bae JH 《Cytotherapy》2012,14(3):296-305
Background aimsStromal vascular fractions (SVF) from adipose tissue have heterogeneous cell populations, and include multipotent adipose-derived stem cells. The advantages of using of SVF include the avoidance of an additional culture period, a reduced risk of extensive cell contamination, and cost-effectiveness.MethodsUnilateral 20-mm mid-diaphyseal segmental defects in rabbit ulna were treated with one of the following: polylactic glycolic acid (PLGA) scaffold alone (group 1, control), a PLGA scaffold with undifferentiated SVF cells (group 2), or a PLGA scaffold with osteogenically differentiated SVF cells (group 3). At 8 weeks after implantation, five rabbits in each treatment group were killed to assess bone defect healing by plain radiography, quantitative microcomputed tomography and histology.ResultsThe SVF cells were well grown on PLGA scaffolds and expressed type I collagen and alkaline phosphatase (ALP). The intensity of ALP and OPN gene expressions in osteogenic medium culture were increased from 14 days to 28 days. In vivo evaluations at 8 weeks showed that treatment of SVF cells with or without osteogenic differentiation resulted in more bone formation in the critically sized segmental defects than PLGA scaffold alone. Osteogenically differentiated SVF cells significantly enhanced bone healing compared with undifferentiated SVF cells.ConclusionsAdipose-derived stromal SVF showed osteogenic potential in vitro. Accordingly, SVF could provide a cell source for bone tissue engineering. However, treatment with uncultured SVF cells on bone healing was not satisfactory in the in vivo animal model.  相似文献   

10.
Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS) complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS). In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra) combined with insulin-like growth factor-1 (IGF-1) in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG) and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO) synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.  相似文献   

11.
Adipose tissue-derived stromal cells (ADSCs) are of interest for regenerative medicine as they are isolated easily and can differentiate into multiple cell lineages. Studies of their in vitro proliferation, survival, and differentiation are common; however, genetic effects on these phenotypes remain unknown. To test if these phenotypes are genetically regulated, ADSCs were isolated from three genetically diverse inbred mouse strains- C57BL/6J (B6), BALB/cByJ (BALB), and DBA/2J (D2)- in which genetic regulation of hematopoietic stem function is well known. ADSCs from all three strains differentiated into osteogenic and chondrogenic lineages in vitro. ADSCs from BALB grew least well in vitro, probably due to apoptotic cell death after several days in culture. BALB ADSCs were also the most susceptible to the free radical inducers menadione and H2O2. ADSCs from the three possible F1 hybrids were employed to further define genetic regulation of ADSC phenotypes. D2, but not B6, alleles stimulated ADSC expansion in BALB cells. In contrast, B6, but not D2, alleles rescued BALB H2O2 resistance. We conclude that low oxidative stress resistance does not limit BALB ADSC growth in vitro, as these phenotypes are genetically regulated independently. In addition, ADSCs from these strains are an appropriate model system to investigate genetic regulation of ADSC apoptosis and stress resistance in future studies. Such investigations are essential to optimize cell expansion and differentiation and thus, potential for regenerative medicine.  相似文献   

12.
Articular cartilage repair might be stimulated by the controlled delivery of therapeutic factors. We tested the hypotheses whether TGF-ß1 can be released from a polymeric scaffold over a prolonged period of time in vitro and whether its transplantation modulates cartilage repair in vivo. Unloaded control or TGF-ß1 poly(ether-ester) copolymeric scaffolds were applied to osteochondral defects in the knee joints of rabbits. In vitro, a cumulative dose of 9 ng TGF-ß1 was released over 4 weeks. In vivo, there were no adverse effects on the synovial membrane. Defects treated with TGF-ß1 scaffolds showed no significant difference in individual parameters of chondrogenesis and in the average cartilage repair score after 3 weeks. There was a trend towards a smaller area (42.5 %) of the repair tissue that stained positive for safranin O in defects receiving TGF-ß1 scaffolds. The data indicate that TGF-ß1 is released from emulsion-coated scaffolds over a prolonged period of time in vitro and that application of these scaffolds does not significantly modulate cartilage repair after 3 weeks in vivo. Future studies need to address the importance of TGF-ß1 dose and release rate to modulate chondrogenesis.  相似文献   

13.
Background aimsMesenchymal stromal cells (MSC) possess multilineage differentiation potential and characteristics of self-renewal. It has been reported that MSC can acquire characteristics of cells in the periodontal ligament (PDL) in vitro. Moreover, the transplantation of MSC has been shown to be a promising strategy for treating periodontal defects. However, little is known about the fate of MSC in periodontal tissue in vivo. The aim of this study was to trace the paths of MSC after transplantation into periodontal tissues in vivo.MethodsMSC labeled with bromodeoxyuridine (BrdU) were transplanted into periodontal defects of beagle dogs. Six weeks after surgery, the animals were killed and decalcified specimens were prepared. Migration and differentiation of MSC were detected by single/double immunohistochemistry and a combination of immunohistochemistry and in situ hybridization.ResultsBrdU-labeled MSC were observed distributing into periodontal tissue that included alveolar bone, PDL, cementum and blood vessels and expressing surface markers typical of osteoblasts and fibroblasts.ConclusionsCumulatively, our data suggest that MSC migrate throughout periodontal tissue and differentiate into osteoblasts and fibroblasts after transplantation into periodontal defects at 6 weeks in vivo, and have the potential to regenerate periodontal tissue.  相似文献   

14.
Porous calcium phosphate ceramics are used in orthopedic and craniofacial applications to treat bone loss, or in dental applications to replace missing teeth. The implantation of these materials, however, does not induce stem cell differentiation, so suitable additional materials such as porous calcium phosphate discs are needed to influence physicochemical responses or structural changes. Rabbit adipose-derived stem cells (ADSC) and mouse osteoblastic cells (MC3T3-E1) were evaluated in vitro by the MTT assay, semi-quantitative RT-PCR, and immunoblotting using cells cultured in medium supplemented with extracts from bioceramics, including calcium metaphosphate (CMP), hydroxyapatite (HA) and collagen-grafted HA (HA-col). In vivo evaluation of the bone forming capacity of these bioceramics in rat models using femur defects and intramuscular implants for 12 weeks was performed. Histological analysis showed that newly formed stromal-rich tissues were observed in all the implanted regions and that the implants showed positive immunoreaction against type I collagen and alkaline phosphatase (ALP). The intramuscular implant region, in particular, showed strong positive immunoreactivity for both type I collagen and ALP, which was further confirmed by mRNA expression and immunoblotting results, indicating that each bioceramic material enhanced osteogenesis stimulation. These results support our hypothesis that smart bioceramics can induce osteoconduction and osteoinduction in vivo, although mature bone formation, including lacunae, osteocytes, and mineralization, was not prominent until 12 weeks after implantation.  相似文献   

15.
Background aimsAdipose stromal cells (ASC) are a promising alternative to progenitor cells from other tissue compartments because of their multipotential and capacity to retrieve significantly more progenitor cells. Initial cell samples are heterogeneous, containing a collection of cells that may contribute to tissue repair, but the sample becomes more homogeneous with each passage. Therefore, we hypothesized that the osteogenic potential of culture-expanded ASC would differ from uncultured ASC.MethodsAdipose tissue was collected from a yearling colt, and ASC were isolated and expanded using standard protocols or prepared by a commercial vendor using proprietary technology (proprietary stromal vascular fraction, SVFp). Cells were seeded on collagen sponges and maintained in osteogenic culture conditions for up to 21 days to assess osteogenic potential. The ability of each population to stimulate neovascularization and bone healing was determined upon implanting cell-loaded sponges into a rodent calvarial bone defect. Neovascularization was measured 3 weeks post-implantation, while bone formation was monitored over 12 weeks using in vivo microcomputed tomography (microCT).ResultsSVFp exhibited increased intracellular alkaline phosphatase activity compared with cultured ASC but proliferated minimally. Histologic analysis of explanted tissues demonstrated greater vascularization in defects treated with cultured ASC compared with SVFp. We detected increases in bone volume for defects treated with cultured cells while observing similar values for bone mineral density, regardless of cell type.ConclusionsThese results suggest that expanded ASC are advantageous for neovascularization and bone healing in this model compared with SVFp, and provide additional evidence of the utility of ASC in bone repair.  相似文献   

16.
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation.  相似文献   

17.
Background aimsMesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue–derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear.MethodsThe authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo.ResultsOsteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs.ConclusionsDFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.  相似文献   

18.
19.
Adipose stem cells (ASCs) have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. In this study, ASCs were harvested from normal Sprague–Dawley (SD) rats and transfected by BMP-2 gene before they were loaded on alginate. The ability of bone regeneration was determined in rat critical-size cranial defects. An 8-mm diameter defect was created in the calvarias of 36 rats; these rats were divided into three groups. In experimental group, the defects were filled with alginate gel combined with BMP-2 transfected ASCs; in negative control group, the defects were filled with alginate gel mixed with normal ASCs; in blank controls, the defects were filled with cell-free alginate gel. Four rats of each group were killed and the cranial defect sites were observed at 4, 8 and 16 weeks after surgery. There was complete repair of cranial defects in experimental group using the alginate gel loading BMP-2 transfected ASC, but only partial repair in negative controls and in the blank control. The engineering approach combining BMP-2 enhanced ASCs with alginate gel can therefore stimulate bone regeneration and repair for the large size bone defects.  相似文献   

20.
ObjectiveThe aim of this work was to synthesize and to characterize chemically and biologically (in vitro and in vivo) a nano-sized hydroxyapatite (nHA).Materials and methodsWet chemical precipitation at room temperature was performed, then chemical structure was explored using transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. In vitro biological characterization was done using MG63 osteoblastic cell line cultured onto the material, and characterization was done for morphology (scanning electron microscopy), viability (live/dead assay) and proliferation (MTT test). Finally, nHA powder was tested in vivo in a study involving C57 Black mice for bone repair in a calvarial bone critical sized defect.ResultsMorphological, physico-chemical and cristallographic analyses revealed specific features of hydroxyapatite. Biological in vitro experiments revealed high affinity and proliferative ability of MG63 cells cultured onto the material. In vivo study displayed that in this model, the material allowed to repair bone continuity after 1 month healing.Discussion and conclusionsThe different ways of nHA synthesis are discussed regarding the potential application of the material. The obtained material should find applications in bone tissue engineering experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号