首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background aimsThe transmigratory capacity of bone marrow (BM) mesenchymal stromal cells (MSC) through the endothelial cell barrier into various tissues and their differentiation potential makes them ideal candidates for cell therapy. Nevertheless, the mechanisms and agents promoting their migration are not fully understood. We evaluated the effects of several inflammatory cytokines on the migration of BM MSC and matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) production.MethodsThe migratory potential of BM MSC was evaluated using a Boyden chamber coated with Matrigel® in the presence and absence of stromal cell-derived (SDF)-1α, platelet-derived growth factor (PDGF)bb, insulin-like growth factor (IGF)-I and interleukin (IL)-6. The ability of inflammatory cytokines to induce MSC migration was tested in presence of their respective Ab or blocking peptide. We used immunofluorescence to check the expression of cytokine receptors, and MMP/TIMP production was analyzed at the protein (human cytokine array, enzyme-linked immunosorbent assay (ELISA), gelatine zymography and Western blot) and mRNA quantitative real-time polymerase chain reaction (qRT-PCR) levels.ResultsWe have demonstrated that inflammatory cytokines promote the migratory capacity of BM MSC according to the expression of their respective receptors. Higher migration through Matrigel was observed in response to IL-6 and PDGFbb. qRT-PCR and cytokine array revealed that migration was the result of the variable level of MMP/TIMP in response to inflammatory stimuli.ConclusionsOur observations suggest that chemokines and cytokines involved in the regulation of the immunity or inflammatory process promote the migration of MSC into BM or damaged tissues. One of the mechanisms used by MSC to promote their migration though the extracellular matrix is modulation of the production of MMP-1, MMP-2, MMP-13, TIMP-1 and TIMP-2.  相似文献   

2.
In recent years it has become clear that the therapeutic properties of bone marrow-derived mesenchymal stromal cells (MSC) are related not only to their ability to differentiate into different lineages but also to their capacity to suppress the immune response. We here studied the influence of MSC on macrophage function. Using mouse thioglycolate-elicited peritoneal macrophages (M) stimulated with LPS, we found that MSC markedly suppressed the production of the inflammatory cytokines TNF-α, IL-6, IL-12p70 and interferon-γ while increased the production of IL-10 and IL-12p40. Similar results were observed using supernatants from MSC suggesting that factor(s) constitutively released by MSC are involved. Supporting a role for PGE2 we observed that acetylsalicylic acid impaired the ability of MSC to inhibit the production of inflammatory cytokines and to stimulate the production of IL-10 by LPS-stimulated M. Moreover, we found that MSC constitutively produce PGE2 at levels able to inhibit the production of TNF-α and IL-6 by activated M. MSC also inhibited the up-regulation of CD86 and MHC class II in LPS-stimulated M impairing their ability to activate antigen-specific T CD4+ cells. On the other hand, they stimulated the uptake of apoptotic thymocytes by M. Of note, MSC turned M into cells highly susceptible to infection with the parasite Trypanosoma cruzi increasing more than 5-fold the rate of M infection. Using a model of inflammation triggered by s.c. implantation of glass cylinders, we found that MSC stimulated the recruitment of macrophages which showed a low expression of CD86 and the MHC class II molecule Iab and a high ability to produce IL-10 and IL-12p40, but not IL-12 p70. In summary, our results suggest that MSC switch M into a regulatory profile characterized by a low ability to produce inflammatory cytokines, a high ability to phagocyte apoptotic cells, and a marked increase in their susceptibility to infection by intracellular pathogens.  相似文献   

3.
4.
AimsThe aim of this study was to compare the anti-inflammatory effect of proteoglycan (PG) with that of progesterone (P) in the cultured fibroblasts from human uterine cervix.Main methodsAfter obtaining informed consent, the cervix was collected from normal women undergoing total hysterectomy. The cervix was cultured until fibroblasts proliferated and had grown to confluence, then, the fibroblasts were stimulated by lipopolysaccharide (LPS) with or without PG, P and a combination of both; they were cultured for 24–48 h. The anti-inflammatory effects of PG and P were evaluated by the suppression of IL-6 or IL-8 secretion. The expression of the IL-6 or IL-8 gene and the expression of their protein were determined by real-time PCR, and ELISA, respectively. Activation of Toll-like receptor (TLR) 4 was evaluated by Western blotting.Key findingsLPS markedly enhanced gene and protein expression of IL-6 and IL-8 in human uterine cervical fibroblasts. The up-regulation of the IL-6 or IL-8 gene and protein expression by LPS was significantly suppressed with PG, P and a combination of both. Western blotting revealed that combination of PG and P showed more potent inhibition on LPS-stimulated TLR4 induction than that seen by each.SignificanceThis study showed that both PG and P have an inhibitory effect on LPS-induced inflammation. This anti-inflammatory effect of PG and P was augmented by co-administration of both, suggesting for the first time that PG has an anti-inflammatory effect on human uterine cervical fibroblasts.  相似文献   

5.
BackgroundEsophageal cancer is the seventh leading cause of cancer death in males in USA, and there is a strong link has been demonstrated between inflammation and esophageal cancer, interleukin (IL)-32 is a recently described pro-inflammatory cytokine characterized by the induction of nuclear factor NF-κB activation, the p38MAPK also plays an important role in key cellular processes related to inflammation and cancer. We investigated whether the IL-32 expression may be involved in esophageal carcinogenesis through modulates the activity of NF-κB and p-p38 MAPK.MethodMalignant esophageal tissue and blood samples were obtained from 65 operated untreated patients, normal samples was obtained from 35 patients operated for other reasons as control. IL-32 expression visualized by immunohistochemistry, Real time RT–PCR for IL-32 mRNA expression, NF-κB phosphorylation and phosphorylated p38mapk were analyzed by immunoblotting, ELISA for further detection IL-32 and cytokines (TNF-α, IL-1β, IL-6 and IL-8) concentration in the patient’s sera.ResultsIL-32 expression was increased in immunohistochemical staining for malignant esophageal tissue and it’s correlated with the relative expression level of IL-32 mRNA P = 0.007, the P-NF-κB level elevated in tumor tissue compared with control and no difference in the total NF-κB level P = 0.003 while the IL-32 up-regulated the P-pNF-κB in the esophageal tumor P = 0.005. There is increase in p-p38MAPK activation underlying IL-32 expression in tumor P = 0.004, but no change in total p38 MAPK in malignant esophagus. The plasma level of IL-32 expression was increased in malignant esophageal patients P = 0.01, with increased in the levels of the cytokines TNF-α, IL-6, and IL-1β P<0.05.ConclusionsUnderstanding the pathway of IL-32 expression to stimulate the secretion cytokines via the activation of NF-κB and up-regulation of p-p38MAPK may or may not prove to be a therapeutic target, or a biomarker, and future studies will finally answer this hypothesis generated.  相似文献   

6.
Background aimsPreviously, we have shown that human decidua-derived mesenchymal stromal cells (DMSC) are mesenchymal stromal cells (MSC) with a clonal differentiation capacity for the three embryonic layers. The endodermal capacity of DMSC was revealed by differentiation into pulmonary cells. In this study, we examined the hepatic differentiation of DMSC.MethodsDMSC were cultured in hepatic differentiation media or co-cultured with murine liver homogenate and analyzed with phenotypic, molecular and functional tests.Results and ConclusionsDMSC in hepatic differentiation media changed their fibroblast morphology to a hepatocyte-like morphology and later formed a 3-dimensional (3-D) structure or hepatosphere. Moreover, the hepatocyte-like cells and the hepatospheres expressed liver-specific markers such as synthesis of albumin (ALB), hepatocyte growth factor receptor (HGFR), α-fetoprotein (AFP) and cytokeratin-18 (CK-18), and exhibited hepatic functions including glycogen storage capacity and indocyanine green (ICG) uptake/secretion. Human DMSC co-cultured with murine liver tissue homogenate in a non-contact in vitro system showed hepatic differentiation, as evidenced by expression of AFP and ALB genes. The switch in the expression of these two genes resembled liver development. Indeed, the decrease in AFP and increase in ALB expression throughout the co-culture were consistent with the expression pattern observed during normal liver organogenesis in the embryo. Interestingly, AFP and ALB expression was significantly higher when DMSC were co-cultured with injured liver tissue, indicating that DMSC respond differently under normal and pathologic micro-environmental conditions. In conclusion, DMSC-derived hepatospheres and DMSC co-cultured with liver homogenate could be suitable in vitro models for toxicologic, developmental and pre-clinical hepatic regeneration studies.  相似文献   

7.
《Cytotherapy》2022,24(2):137-148
Background aimsMesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function.MethodsThree MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores.ResultsSignificant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88).ConclusionsThe work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.  相似文献   

8.
9.
10.
11.
Cytokine expression in three mouse models of experimental hepatitis   总被引:15,自引:0,他引:15  
Sass G  Heinlein S  Agli A  Bang R  Schümann J  Tiegs G 《Cytokine》2002,19(3):115-120
The activation of T-cells and macrophages and subsequent induction of cytokines are critical factors in the development of hepatitis. Up-regulation of pro-inflammatory cytokines, e.g. TNF has been shown to induce liver injury while counter regulation by anti-inflammatory cytokines, e.g. IL-10 is protective. We compared the induction of liver injury and the expression pattern of a variety of cytokines in T-cell- versus non-T-cell-dependent mouse models of liver injury. TNF, IFNgamma, IL-2, IL-4, IL-6, IL-10 and IL-12 were measured in plasma and liver tissue after either Concanavalin A (Con A), D-galactosamine/lipopolysaccharide (GalN/LPS) or high dose LPS induced liver injury. Additionally, the intra-hepatic expression of the putative pathogenicity factor high mobility group 1 protein (HMG-1) was compared in all three models.  相似文献   

12.
Background aimsTransplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media.MethodsThe effects of prolonged hypoxic culture on growth and pro-angiogenic properties were investigated using human ASC cultured at 1%, 5% and 21% oxygen. The effect of trypsinization on the expression of pro-angiogenic genes was also determined.ResultsTrypsinization induced up-regulation of the vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) genes independent of oxygen concentration. The expression of VEGF and IGF-1 was up-regulated in ASC cultured at 1% oxygen for 13 days compared with 4 days. The VEGF concentration in ASC-conditioned media was higher after prolonged hypoxic culture compared with short-term culture, while the IGF-1 and chemokine (CXC motif) ligand 12 (CXCL12) concentrations were unchanged. The VEGF receptor blocker SU5416 abolished angiogenesis in a cultured rat aortic ring model. Media from cells exposed to hypoxia increased angiogenesis, an effect that was dependent on factors other than just the VEGF concentration in the added media.ConclusionsOptimization of the angiogenic potential of stem cell-based therapy in the treatment of vascular disease is important. We have demonstrated that prolonged hypoxic culture and trypsinization augment the therapeutic angiogenic potential of ASC.  相似文献   

13.
Background

Myocardial infarction (MI) is a common cause of mortality in people. Mesenchymal stem cell (MSC) has been shown to exert therapeutic potential to treat myocardial infarction (MI). However, in patients with diabetes, the diabetic environment affected MSCs activity and could impair the efficacy of treatment. Interleukin-10 (IL-10) has been shown to attenuate MI by suppressing inflammation. In current study, the combination of MSC transplantation with IL-10 was evaluated in a diabetic mice model with MI.

Methods

We engineered bone marrow derived MSCs (BM-MSCs) to overexpress IL-10 by using CRISPR activation. We established the diabetic mice model with MI and monitored the IL-10 expression after BM-MSCs transplantation. We also evaluated the effects of BM-MSCs transplantation on inflammatory response, cell apoptosis, cardiac function and angiogenesis.

Results

CRISPR activation system enabled overexpression of IL-10 in BM-MSCs. Transplantation of BM-MSCs overexpressing IL-10 resulted in IL-10 expression in heart after transplantation. Transplantation of BM-MSCs overexpressing IL-10 inhibited inflammatory cell infiltration and pro-inflammatory cytokines production, improved cardiac functional recovery, alleviated cardiac injury, decreased apoptosis of cardiac cells and increased angiogenesis.

Conclusion

In summary, we have demonstrated the therapeutic potential of IL-10 overexpressed BM-MSCs in the treatment of MI in diabetic mice.

  相似文献   

14.
15.
Background aimsFirst-trimester chorionic villi (CV) are an attractive source of human mesenchymal stromal cells (hMSC) for possible applications in cellular therapy and regenerative medicine. Human MSC from CV were monitored for genetic stability in long-term cultures.MethodsWe set up a good manufacturing practice cryopreservation procedure for small amounts of native CV samples. After isolation, hMSC were in vitro cultured and analyzed for biological end points. Genome stability at different passages of expansion was explored by karyotype, genome-wide array-comparative genomic hybridization and microsatellite genotyping.ResultsGrowth curve analysis revealed a high proliferative potential of CV-derived cells. Immunophenotyping showed expression of typical MSC markers and absence of hematopoietic markers. Analysis of multilineage potential demonstrated efficient differentiation into adipocytes, osteocytes, chondrocytes and induction of neuro-glial commitment. In angiogenic experiments, differentiation in endothelial cells was detected by in vitro Matrigel assay after vascular endothelial growth factor stimulation. Data obtained from karyotyping, array-comparative genomic hybridization and microsatellite genotyping comparing early with late DNA passages did not show any genomic variation at least up to passage 10. Aneuploid clones appeared in four of 14 cases at latest passages, immediately before culture growth arrest.ConclusionsOur findings indicate that hCV-MSC are genetically stable in long-term cultures at least up to passage 10 and that it is possible to achieve clinically relevant amounts of hCV-MSC even after few stages of expansion. Genome abnormalities at higher passages can occasionally occur and are always associated with spontaneous growth arrest. Under these circumstances, hCV-MSC could be suitable for therapeutic purposes.  相似文献   

16.
《Cytotherapy》2014,16(10):1345-1360
Background aimsStem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow–derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model.MethodsGroups received either 1 × 105, 5 × 105, or 1 × 106 BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days.ResultsTortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions.DiscussionWe demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.  相似文献   

17.
ObjectiveTo characterize immune modulation as expressed by cytokine assays at three time-points in human pregnancy.Study designThis is a prospective, longitudinal study of a broad panel of cytokine expression during singleton pregnancies resulting in an uncomplicated, full-term, live births. Peripheral blood was obtained at 8–14, 18–22, and 28–32 weeks gestation. Six cytokines – IFN-γ, IL-4, TNF-α, IL-1β, IL-6, and IL-10 – were measured in supernatants obtained from whole blood stimulations with PHA or LPS and were compared to unstimulated controls. Samples were processed by Luminex-100 MAP®. We used Generalized Linear Models (GLM) to evaluate cytokine trajectories.ResultsComplete data were obtained for 45 uncomplicated pregnancies. Overall, peripheral blood WBC’s demonstrated dampened cytokine responses. However, over the course of pregnancy, we found enhanced counter-regulatory cytokine expression (e.g., shown by increased IL-10).ConclusionThe overall decrease in pro-inflammatory cytokines and increase in counter-regulatory cytokines as uncomplicated pregnancy progresses supports the evolving concepts of immunoregulation for the maintenance of a viable pregnancy.  相似文献   

18.
The therapeutic efficacy of multipotent mesenchymal stromal cells (MSCs) is attributed to particular MSC-derived cytokines and growth factors. As MSCs are applied locally to target organs or home there after systemic administration, they experience diverse microenvironments that are biochemically and biophysically distinct. Here we use well-defined in vitro conditions to study the impact of substrate elasticity on MSC-derived trophic factors. By varying hydrogel compliance, the elasticity of brain and muscle tissue was mimicked. We screened >90 secreted factors at the protein level, finding a diverse elasticity-dependent expression pattern. In particular, IL-8 was up-regulated as much as 90-fold in MSCs cultured for 2 days on hard substrates, whereas levels were consistently low on soft substrates. In summary, we show substrate elasticity directly affects MSC paracrine expression, a relevant finding for therapies administering MSCs in vivo.  相似文献   

19.
AimsJoint inflammation leads to bone erosion in rheumatoid arthritis (RA), whereas it induces new bone formation in spondyloarthropathies (SpAs). Our aims were to clarify the effects of tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) on osteoblast differentiation and mineralization in human mesenchymal stem cells (MSCs).Main methodsIn MSCs, expression of osteoblast markers was assessed by real-time PCR and ELISA. Activity of tissue-nonspecific alkaline phosphatase (TNAP) and mineralization were determined by the method of Lowry and alizarin red staining respectively. Involvement of RUNX2 in cytokine effects was investigated in osteoblast-like cells transfected with a dominant negative construct.Key findingsTNF-α (from 0.1 to 10 ng/ml) and IL-1β (from 0.1 to 1 ng/ml) stimulated TNAP activity and mineralization in MSCs. Addition of 50 ng/ml of IL-1 receptor antagonist in TNF-α-treated cultures did not reverse TNF-α effects, indicating that IL-1 was not involved in TNF-α-stimulated TNAP activity. Both TNF-α and IL-1β decreased RUNX2 expression and osteocalcin secretion, suggesting that RUNX2 was not involved in mineralization. This hypothesis was confirmed in osteoblast-like cells expressing a dominant negative RUNX2, in which TNAP expression and activity were not reduced. Finally, since mineralization may merely rely on increased TNAP activity in a collagen-rich tissue, we investigated cytokine effects on collagen expression, and observed that cytokines decreased collagen expression in osteoblasts from MSC cultures.SignificanceThe different effects of cytokines on TNAP activity and collagen expression may therefore help explain why inflammation decreases bone formation in RA whereas it induces ectopic ossification from collagen-rich entheses during SpAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号