首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reed canarygrass is an important agricultural crop thought to be native to Europe, Asia, and North America. However, it is one of the worst wetland invaders in North American wetlands. The native North American status has been supported by the circumstantial evidence of early botanical records and the dating and location of herbarium specimens. The lack of empirical evidence has left the North American native status of the species in doubt and prevented comparisons between native North American and Eurasian populations of the species. We utilized genetic markers to compare a wide range of European and Asian collections to DNA extracted from 38 early North American herbarium specimens. The genetic data confirm the presence of a distinct population present throughout North America in the early twentieth century, but not present in Europe or Asia, ranging from Alaska, USA to New Brunswick, Canada. These native North American populations of reed canarygrass are likely present throughout Alaska today, as one specimen was collected as recently as 1996, and may still be present in other regions of North America. Future research can utilize this dataset to determine the origin of present-day invasive populations in North American wetlands.  相似文献   

2.
Aim Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguiscati and Jatropha gossypiifolia using molecular data. Location Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results Strong genetic structure was found within the native range of M. unguiscati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguiscati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non‐native ranges. Invasive populations of M. unguiscati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguiscati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio‐control agents will be considerably more complex.  相似文献   

3.
Adaptive and non-adaptive evolutionary processes are likely to play important roles in biological invasions but their relative importance has hardly ever been quantified. Moreover, although genetic differences between populations in their native versus invasive ranges may simply reflect different positions along a genetic latitudinal cline, this has rarely been controlled for. To study non-adaptive evolutionary processes in invasion of Mimulus guttatus, we used allozyme analyses on offspring of seven native populations from western North America, and three and four invasive populations from Scotland and New Zealand, respectively. To study quantitative genetic differentiation, we grew 2474 plants representing 17 native populations and the seven invasive populations in a common greenhouse environment under temporarily and permanently wet soil conditions. The absence of allozyme differentiation between the invasive and native range indicates that multiple genotypes had been introduced to Scotland and New Zealand, and suggests that founder effects and genetic drift played small, if any, roles in shaping genetic structure of invasive M. guttatus populations. Plants from the invasive and native range did not differ in phenology, floral traits and sexual and vegetative reproduction, and also not in plastic responses to the watering treatments. However, plants from the invasive range produced twice as many flower-bearing upright side branches than the ones from the native populations. Further, with increasing latitude of collection, vegetative reproduction of our experimental plants increased while sexual reproduction decreased. Plants from the invasive and native range shared these latitudinal clines. Because allozymes showed that the relatedness between native and invasive populations did not depend on latitude, this suggests that plants in the invasive regions have adapted to the local latitude. Overall, our study indicates that quantitative genetic variation of M. guttatus in its two invasive regions is shaped by adaptive evolutionary processes rather than by non-adaptive ones.  相似文献   

4.
The small aquatic snail Potamopyrgus antipodarum is an important invading species in Europe, Australia and North America. European populations are generally believed to derive from accidental introductions from New Zealand, probably dating back to the mid-19th century. We have employed mitochondrial DNA sequences to test the proposed New Zealand origin of European Potamopyrgus, and to learn more about its genealogical history. Using a 481-bp region of the 16S ribosomal RNA gene, we identified 17 distinct haplotypes among 65 snails from New Zealand. In marked contrast, only two haplotypes were found across all European samples, which cover a large geographical area. Importantly, these two haplotypes are shared with snails from the North Island of New Zealand. Due to sampling limitations we cannot rule out a South Island origin for one of the haplotypes, but our results clearly demonstrate the New Zealand origin of European populations. The marked divergence among the two European haplotypes implies the successful colonization by two distinct mitochondrial lineages, which is consistent with previous data based on nuclear markers.  相似文献   

5.
Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.  相似文献   

6.
Non‐native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.  相似文献   

7.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

8.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

9.
In this study, complementary species-level and intraspecific phylogenies were used to better circumscribe the original native range and history of translocation of the invasive tree Parkinsonia aculeata. Species-level phylogenies were reconstructed using three chloroplast gene regions, and amplified fragment length polymorphism (AFLP) markers were used to reconstruct the intraspecific phylogeny. Together, these phylogenies revealed the timescale of transcontinental lineage divergence and the likely source of recent introductions of the invasive. The sequence data showed that divergence between North American and Argentinean P. aculeata occurred at least 5.7 million years ago, refuting previous hypotheses of recent dispersal between North and South America. AFLP phylogenies revealed the most likely sources of naturalized populations. The AFLP data also identified putatively introgressed plants, underlining the importance of wide sampling of AFLPs and of comparison with uniparentally inherited marker data when investigating hybridizing groups. Although P. aculeata has generally been considered North American, these data show that the original native range of P. aculeata included South America; recent introductions to Africa and Australia are most likely to have occurred from South American populations.  相似文献   

10.
Ambrosia artemisiifolia is an aggressive North American annual weed, found particularly in sunflower and corn fields. Besides its economic impact on crop yield, it represents a major health problem because of its strongly allergenic pollen. Ragweed was imported inadvertently to Europe in the 18th century and has become invasive in several countries, notably in the Rhône Valley of France. It has recently expanded in both the Provence-Alpes-Côte-d’Azur and Bourgogne regions. As first steps towards understanding the causes and mechanisms of ragweed invasion, genetic variability of French and North American populations was analysed using microsatellites. Overall genetic variability was similar in North America and in the Rhône-Alpes region, but within-population levels of genetic variability were surprisingly lower in native than in invasive French populations. French populations also exhibited lower among-population differentiation. A significant pattern of isolation by distance was detected among North American populations but not among French populations. Assignment tests and distribution of rare alleles did not point to a single origin for all French populations, nor for all individuals within populations and private alleles from different North American populations were found in the same French populations. Indeed, within all French populations, individual plants were roughly equally assigned to the different North American populations. Altogether, these results suggest that the French invasive populations include plants from a mixture of sources. Reduced diversity in populations distant from the original area of introduction indicated that ragweed range expansion probably occurred through sequential bottlenecks from the original populations, and not from subsequent new introductions.  相似文献   

11.

Background

Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed.

Principal Findings

We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted.

Conclusions

This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments.  相似文献   

12.
Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre‐ and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.  相似文献   

13.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

14.
An understanding of genetic variation and structure of pest populations has the potential to improve the efficiency of measures to control them. Genetic analysis was undertaken at five microsatellite loci in four native Australian and 14 introduced New Zealand populations of the common brushtail possum Trichosurus vulpecula in order to document these parameters. Genetic variation in New Zealand populations, and phylogenetic relationships among Australian and New Zealand populations, were largely predicted by the recorded introduction history. Populations on the two main islands of New Zealand had only slightly lower genetic diversity than did Australian populations, except that allelic richness on the South Is. was significantly lower. Diversity was higher in North Is. than in South Is. populations (although not significantly so) and mainland New Zealand populations as a group were significantly more diverse than offshore islands that represented secondary population size bottlenecks. In phylogenetic analyses South Is. and offshore island populations grouped with Tasmania, while North Is. populations grouped either with mainland Australia or were intermediate between the two Australian sources. This scheme was supported by admixture coefficients showing that North and South Is./offshore island populations were largely mainland Australian and Tasmanian in origin, respectively. Population structure differed markedly between the North and South Islands: populations were typically more genetically differentiated on the former than the latter, which also showed significant isolation-by-distance. Substantial linkage disequilibrium in most sampled New Zealand but no Australian population between microsatellite loci Tv16 and Tv27 suggests they may be physically linked.  相似文献   

15.
Several eusocial wasps are prominent invaders to remote islands. The paper wasp Polistes chinensis antennalis is native to East Asia, was introduced to New Zealand in 1979 and has expanded its distribution there. This provides an excellent opportunity to examine the impacts of an initial bottleneck and subsequent expansion on genetic structure. We analysed and compared the genetic population structures of the native (Japan and South Korea) and invasive New Zealand populations. Although 94% of individuals had shared haplotypes detected across both populations, the remaining 6% had private haplotypes identified in only one of the three countries. The genetic variation at microsatellite loci was lower in New Zealand than in native countries, and the genetic structure in New Zealand was clearly distinct from that in its native range. Higher frequencies of diploid‐male‐ and triploid‐female‐producing colonies were detected in New Zealand than in the native countries, showing the reduction in genetic variation via a genetic bottleneck. At least two independent introductions were suggested, and the putative source regions for New Zealand were assigned as Kanto (central island) and Kyushu (south island) in Japan. Serial founder events following the initial introduction were also indicated. The estimated dispersal distance between mother and daughter in New Zealand was twice that in Japan. Thus, the introduction history of P. chinensis antennalis in New Zealand is probably the result of at least two independent introductions, passing through a bottleneck during introduction, followed by population expansion from the point of introduction.  相似文献   

16.
Spread of the invasive cactus-feeding moth Cactoblastis cactorum has been well documented since its export from Argentina to Australia as a biocontrol agent, and records suggest that all non-native populations are derived from a single collection in the moth’s native range. The subsequent global spread of the moth has been complex, and previous research has suggested multiple introductions into North America. There exists the possibility of additional emigrations from the native range in nursery stock during the late twentieth century. Here, we present mitochondrial gene sequence data (COI) from South America (native range) and North America (invasive range) to test the hypothesis that the rapid invasive spread in North America is enhanced by unique genetic combinations from isolated portions of the native range. We found that haplotype richness in the native range of C. cactorum is high and that there was 90% lower richness in Florida than in Argentina. All Florida C. cactorum haplotypes are represented in a single, well-defined clade, which includes collections from the reported region of original export from Argentina. Thus, our data are consistent with the documented history suggesting a single exportation of C. cactorum from the eastern region of the native range. Additionally, the presence of geographic structure in three distinct haplotypes within the same clade across Florida supports the hypothesis of multiple introductions into Florida from a location outside the native range. Because the common haplotypes in Florida are also known to occur in the neighboring Caribbean Islands, the islands are a likely source for independent North American colonization events. Our data show that rapid and successful invasion within North America cannot be attributed to unique genetic combinations. This suggests that successful invasion of the southeastern US is more likely the product of a fortuitous introduction into favorable abiotic conditions and/or defense responses of specific Opuntia hosts, rapid adaptation, or a release from native enemies.  相似文献   

17.
R Y Shirk  J L Hamrick  C Zhang  S Qiang 《Heredity》2014,112(5):497-507
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species'' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects'') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations.  相似文献   

18.
The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera; Buprestidae), is an invasive wood-boring beetle native to northeast Asia. This species was first detected in Michigan USA in 2002, and is a significant threat to native and ornamental ash tree species (Fraxinus spp.) throughout North America. We characterized seven polymorphic microsatellite markers for EAB and used these to investigate EAB population structure in the early invasive populations within North America and in comparison with Asia. We found 2–9 alleles per microsatellite locus, no evidence of linkage disequilibrium, and no association with known coding sequences, suggesting that these markers are suitable for population genetic analysis. Microsatellite population genetic structure was examined in 48 EAB populations sampled between 2003 and 2008 from five regions, three in the introduced range, Michigan (US) and Ontario and Quebec (Canada) and two Asian regions, China and South Korea, where EAB is native. We found significant genetic variation geographically but not temporally in EAB populations. Bayesian clustering analyses of individual microsatellite genotypes showed strong clustering among multiple North American populations and populations in both China and South Korea. Finally, allelic richness and expected heterozygosity were higher in the native range of EAB, but there was no difference in observed heterozygosity, suggesting a significant loss of alleles upon introduction but no significant change in the distribution of alleles within and among individuals.  相似文献   

19.
Variability at seven microsatellite loci was used to survey the genetic population structure of the shortfinned eel Anguilla australis . Samples were collected from six estuaries along the east coast of Australia and from three estuaries around New Zealand. Hierarchical analysis of molecular variance of the five loci with good fit to Hardy–Weinberg genotypic proportions detected highly significant differences among samples ( F ST= 0·016, P < 0·001). The fixation index between countries ( F CT= 0·012, P < 0·001) was more than double the index among samples within countries ( F SC= 0·005, P < 0·05). An unweighted pair-group method with arithmetic mean (UPGMA) tree also supported the separation of Australian and New Zealand populations, as did assignment tests, which correctly assigned 80 and 84% of the individuals to Australia and New Zealand, respectively. Isolation-by-distance appeared among samples overall ( r = 0·807, P < 0·001), but not among samples within countries ( r = 0·027, P > 0·05 in Australia; r = 0·762, P > 0·05 in New Zealand). These findings indicate that populations of A. australis in East Australia and in New Zealand may be reproductively isolated from one another. Genetic differentiation among populations of A. australis was two- to 10-fold higher than that among populations of other temperate eels in the North Atlantic Ocean, suggesting that two group of A. australis may reflect sub-species. Anguilla australis in the two countries have different genetic structures and thus require separate management. Genetic isolation between Australian and New Zealand populations indicates that juveniles recruit independently into these two regions from geographically or temporally isolated spawning areas.  相似文献   

20.
Clonal expansion has been observed in several invasive fungal plant pathogens colonizing new areas, raising the question of the origin of clonal lineages. Using microsatellite markers, we retraced the evolutionary history of introduction of the chestnut blight fungus, Cryphonectria parasitica, in North America and western Europe. Combining discriminant analysis of principal components and approximate Bayesian computation analysis, we showed that several introduction events from genetically differentiated source populations have occurred in both invaded areas. In addition, a low signal of genetic recombination among different source populations was suggested in North America. Finally, two genetic lineages were present in both invaded areas as well as in the native areas, suggesting the existence of genetic lineages with a high capacity to establish in diverse environments and host species. This study confirmed the importance of multiple introductions, but questioned the role of genetic admixture in the success of introduction of a fungal plant pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号