首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis infects a third of the world''s population. Primary tuberculosis involving active fast bacterial replication is often followed by asymptomatic latent tuberculosis, which is characterised by slow or non-replicating bacteria. Reactivation of the latent infection involving a switch back to active bacterial replication can lead to post-primary transmissible tuberculosis. Mycobacterial mechanisms involved in slow growth or switching growth rate provide rational targets for the development of new drugs against persistent mycobacterial infection. Using chemostat culture to control growth rate, we screened a transposon mutant library by Transposon site hybridization (TraSH) selection to define the genetic requirements for slow and fast growth of Mycobacterium bovis (BCG) and for the requirements of switching growth rate. We identified 84 genes that are exclusively required for slow growth (69 hours doubling time) and 256 genes required for switching from slow to fast growth. To validate these findings we performed experiments using individual M. tuberculosis and M. bovis BCG knock out mutants. We have demonstrated that growth rate control is a carefully orchestrated process which requires a distinct set of genes encoding several virulence determinants, gene regulators, and metabolic enzymes. The mce1 locus appears to be a component of the switch to slow growth rate, which is consistent with the proposed role in virulence of M. tuberculosis. These results suggest novel perspectives for unravelling the mechanisms involved in the switch between acute and persistent TB infections and provide a means to study aspects of this important phenomenon in vitro.  相似文献   

2.
Mycobacterium tuberculosis is a bacterial pathogen that can persist for decades in an infected patient without causing a disease. In vivo, the tubercle bacillus present in the lungs store triacylglycerols in inclusion bodies. The same process can be observed in vitro when the bacteria infect adipose tissues. Indeed, before entering in the dormant state, bacteria accumulate lipids originating from the host cell membrane degradation and from de novo synthesis. During the reactivation phase, these lipids are hydrolysed and the infection process occurs. The degradation of both extra and intracellular lipids can be directly related to the presence of lipolytic enzymes in mycobacteria, which have been ignored during a long period particularly due to the difficulties to obtain a high expression level of these enzymes in M. tuberculosis. The completion of the M. tuberculosis genome offered new opportunity to this kind of study. The aim of this review is to focus on the recent results obtained in the field of mycobacterium lipolytic enzymes and although no experimental proof has been shown in vivo, it is tempting to speculate that these enzymes could be involved in the virulence and pathogenicity processes.  相似文献   

3.
4.
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.  相似文献   

5.

Background

It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.

Methodology/Principal Findings

By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.

Conclusions/Significance

These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.  相似文献   

6.
The twin-arginine translocation (Tat) pathway is a system used by some bacteria to export proteins out from the cytosol to the cell surface or extracellular environment. A functional Tat pathway exists in the important human pathogen Mycobacterium tuberculosis. Identification of the substrates exported by the Tat pathway can help define the role that this pathway plays in the physiology and pathogenesis of M. tuberculosis. Here we used a reporter of Tat export, a truncated β-lactamase, ′BlaC, to experimentally identify M. tuberculosis proteins with functional Tat signal sequences. Of the 13 proteins identified, one lacks the hallmark of a Tat-exported substrate, the twin-arginine dipeptide, and another is not predicted by in silico analysis of the annotated M. tuberculosis genome. Full-length versions of a subset of these proteins were tested to determine if the native proteins are Tat exported. For three proteins, expression in a Δtat mutant of Mycobacterium smegmatis revealed a defect in precursor processing compared to expression in the wild type, indicating Tat export of the full-length proteins. Conversely, two proteins showed no obvious Tat export in M. smegmatis. One of this latter group of proteins was the M. tuberculosis virulence factor phospholipase C (PlcB). Importantly, when tested in M. tuberculosis a different result was obtained and PlcB was exported in a twin-arginine-dependent manner. This suggests the existence of an M. tuberculosis-specific factor(s) for Tat export of a proven virulence protein. It also emphasizes the importance of domains beyond the Tat signal sequence and bacterium-specific factors in determining if a given protein is Tat exported.  相似文献   

7.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.  相似文献   

8.
In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond, including bacterial virulence factors. Thus, proteins involved in disulfide bond formation represent good targets for the development of inhibitors that can act as antibiotics or anti‐virulence agents, resulting in the simultaneous inactivation of several types of virulence factors. Here, we present evidence that the disulfide bond forming enzymes, DsbB and VKOR, are required for Pseudomonas aeruginosa pathogenicity and Mycobacterium tuberculosis survival respectively. We also report the results of a HTS of 216,767 compounds tested against P. aeruginosa DsbB1 and M. tuberculosis VKOR using Escherichia coli cells. Since both P. aeruginosa DsbB1 and M. tuberculosis VKOR complement an E. coli dsbB knockout, we screened simultaneously for inhibitors of each complemented E. coli strain expressing a disulfide‐bond sensitive β ‐galactosidase reported previously. The properties of several inhibitors obtained from these screens suggest they are a starting point for chemical modifications with potential for future antibacterial development.  相似文献   

9.
10.
The article draws the attention of chemists to the literature data reporting the discovery of new targets for growth inhibition of Mycobacterium tuberculosis, namely, diterpene cyclase (Rv3377c) and tuberculosinol phosphatase (Rv3378c), which produce diterpenoids of tuberculosinols in the cell membrane of M. tuberculosis, and these diterpenoids ensure the pathogenicity and the virulence of M. tuberculosis. For the first time, by the example of diterpenoid of isosteviol, its binuclear derivatives, triterpenoid betulinic, oleanolic, and ursolic acids, it has been shown by the molecular docking method that the antitubercular activity of natural terpenoids is caused by their ability to bind to the active site of tuberculosinol phosphatase (Rv3378c) of M. tuberculosis. It is suggested that natural and semisynthetic terpenoids represent a promising platform for design of a new generation of antitubercular agents that affect this enzyme.  相似文献   

11.
GlgB (α-1,4-glucan branching enzyme) is the key enzyme involved in the biosynthesis of α-glucan, which plays a significant role in the virulence and pathogenesis of Mycobacterium tuberculosis. Because α-glucans are implicated in the survival of both replicating and non-replicating bacteria, there exists an exigent need for the identification and development of novel inhibitors for targeting enzymes, such as GlgB, involved in this pathway. We have used the existing structural information of M. tuberculosis GlgB for high throughput virtual screening and molecular docking. A diverse database of 330,000 molecules was used for identifying novel and efficacious therapeutic agents for targeting GlgB. We also used three-dimensional shape as well as two-dimensional similarity matrix methods to identify diverse molecular scaffolds that inhibit M. tuberculosis GlgB activity. Virtual hits were generated after structure and ligand-based screening followed by filters based on interaction with human GlgB and in silico pharmacokinetic parameters. These hits were experimentally evaluated and resulted in the discovery of a number of structurally diverse chemical scaffolds that target M. tuberculosis GlgB. Although a number of inhibitors demonstrated in vitro enzyme inhibition, two compounds in particular showed excellent inhibition of in vivo M. tuberculosis survival and its ability to get phagocytosed. This work shows that in silico docking and three-dimensional chemical similarity could be an important therapeutic approach for developing inhibitors to specifically target the M. tuberculosis GlgB enzyme.  相似文献   

12.
New antibiotic targets are urgently needed to tackle the multidrug resistant and latent Mycobacterium tuberculosis, the causative agent of the most formidable infectious disease tuberculosis. Sulfur metabolism is essential for the survival and virulence of many pathogens including M. tuberculosis. The absence of most genes involved in microbial sulfur metabolism in human beings suggests abundant novel potential antibiotic targets in pathogen sulfur metabolism. In this article, a comparative genomic landscape of Mycobacterium sulfur metabolism, such as the uptake, activation, and reduction of sulfate and allied enzymes, the biosynthesis pathway of some sulfated metabolites, and the enzymes involved in these pathways were presented. Novel clues for antibiotic targets are put forward.  相似文献   

13.
Despite a number investigations using rapid sequencing and comparative genomic techniques, attempting to characterise the phenomenon of varying degrees of virulence within the Mycobacterium tuberculosis species, the underlying causes for this still remain largely unexplained. The Beijing lineage of M. tuberculosis has received much attention due to a reported increased pathogenicity and global dissemination. In order to better understand these varying states of virulence, a GCxGC-TOFMS metabolomics research approach was used to compare the varying metabolomes of a hyper- and hypo-virulent Beijing strain of M. tuberculosis, and subsequently identify those metabolite markers differing between these strains. Multi- and univariate statistical analysis of the analysed metabolome data was used to identify those metabolites contributing most to the differences seen between the two sample groups. A general decrease in various carbohydrates, amino acids and lipids associated with cell wall structure and function, were detected in the hyper-virulent Beijing strain, comparatively. Additionally, components of mycothiol metabolism, virulence protein formation and energy production in mycobacteria, were also seen to differ when comparing the two groups. This metabolomics investigation is the first to identify the metabolite markers associated with an increased state of virulence, indicating increased metabolic activity, increased growth/replication rates, increased cell wall synthesis and an altered antioxidant mechanism, all of which would contribute to this organisms increased pathogenicity and survival ability.  相似文献   

14.
Tuberculosis (TB) remains a major cause of mortality and morbidity worldwide, and it is instant to discover novel anti-TB drugs due to the rapidly growing drug-resistance TB. Mycobacterium tuberculosis (Mtb) secreted effector ESAT6 plays a critical role in modulation miRNAs to regulate host defense mechanisms during Mtb infection, it can be a possible target for new tuberculosis drugs. The non-tuberculous mycobacteria Mycobacterium smegmatis (M. smegmatis) and Mtb have high gene homology but no pathogenicity. We used ESAT6 to interfere with macrophages or mice infected by M. smegmatis and determined that it enhanced the survival rate of bacteria and regulated miR-222-3p target PTEN. Expression of miR-222-3p reduced and PTEN enhanced with the progression of macrophages infected by M. smegmatis with ESAT6 co-incubation. MiR-222-3p overexpression diminished M. smegmatis survival and upregulated proinflammatory cytokines. VO-Ohpic trihydrate (PTEN inhibitor) reduced M. smegmatis survival and upregulated proinflammatory cytokines in vivo and in vitro, and VO-Ohpic trihydrate reversed the tissue damage of mouse organs caused by ESAT6. These results uncover an ESAT6 dependent role for miR-222-3p and its target PTEN in regulating host immune responses to bacterial infection and may provide a potential site for the development of anti-tuberculosis drugs that specifically antagonize the virulence of ESAT6.  相似文献   

15.
PknB is an essential serine/threonine protein kinase required for mycobacterial cell division and cell-wall biosynthesis. Here we demonstrate that overexpression of the external PknB_PASTA domain in mycobacteria results in delayed regrowth, accumulation of elongated bacteria and increased sensitivity to β-lactam antibiotics. These changes are accompanied by altered production of certain enzymes involved in cell-wall biosynthesis as revealed by proteomics studies. The growth inhibition caused by overexpression of the PknB_PASTA domain is completely abolished by enhanced concentration of magnesium ions, but not muropeptides. Finally, we show that the addition of recombinant PASTA domain could prevent regrowth of Mycobacterium tuberculosis, and therefore offers an alternative opportunity to control replication of this pathogen. These results suggest that the PknB_PASTA domain is involved in regulation of peptidoglycan biosynthesis and maintenance of cell-wall architecture.  相似文献   

16.
Mycobacterium tuberculosis is a facultative intracellular pathogen, and the ability of this bacterium to survive and to grow inside macrophages is central to its virulence. Multiple strategies are employed by M. tuberculosis to ensure survival in macrophages, including secretion of several proteins, which are good candidates to be virulence factors, drug targets for disease intervention, and vaccine antigens. However, some M. tuberculosis secreted proteins do not appear to play any role in the growth or survival of the bacterium in its mammalian host. Among these proteins are three putative cellulose-targeting proteins encoded by the genes Rv0062, Rv1090, and Rv1987. It has been previously shown that Rv0062 encodes an active cellulase. Here we report that Rv1090 and Rv1987 also encode functional proteins. Rv1090 is able to hydrolyze barley β-glucan while Rv1987 displays cellulose-binding activity on filter paper and on microcrystalline cellulose (Avicel). Collectively, these observations point toward a unique unknown relationship between M. tuberculosis and a cellulose-containing host. We hypothesize that amoeba could be such hosts.  相似文献   

17.
Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.  相似文献   

18.
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.  相似文献   

19.
Molecular hybridisation of four bioactive fragments piperazine, substituted-benzofuran, amino acids, and 2,4-dinitrobenzenesulfonamide as single molecular architecture was designed. A series of new hybrids were synthesised and subjected to evaluation for their inhibitory activity against Mycobacterium tuberculosis (Mtb) H37Rv. 4d–f and 4o found to exhibit MIC as 1.56 µg/mL, equally active as ethambutol whereas 4a, 4c, 4j displayed MIC 0.78 µg/mL were superior to ethambutol. Tested compounds demonstrated an excellent safety profile with very low toxicity, good selectivity index, and antioxidant properties. All the newly synthesised compounds were thoroughly characterised by analytical methods. The result was further supported by molecular modelling studies on the crystal structure of Mycobacterium tuberculosis enoyl reductase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号