首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Endothelial progenitor cells (EPCs) are associated with vascu- lar repairing and progression of atherosclerotic lesion. It may lead to coronary artery disease (CAD) if circulating EPCs lose their function. Continuous nitroglycerin (NTG) therapy causes increased vascular oxidative stress and endothelial dys- function. The aim of this study was to investigate the effects of NTG on the proliferation of human peripheral blood-derived EPCs. EPC cultures, collected from 60 CAD patients and cul- tured for 7-12 days, were treated with different concentra- tions of NTG (0.0, 0.3, 1.0, 2.0, 7.5, 15.0, and 20.0 mg/l) for 72 h, respectively. The cell counts and proliferative activities of EPC; the levels of vascular endothelial growth factor-A (VEGF-A), nitric oxide (NO) and peroxynitrite (ONOO-) in culture medium; and the level of reactive oxygen species (ROS) in adherent cells were measured. Compared with control (0.0 mg/l NTG), the cell number and proliferative ac- tivities of EPCs were increased when treated with 1.0 mg/l NTG and reached maximum level when NTG concentration was 7.5 mg/l. However, there was a significant reduction when treated with higher doses of NTG (≥15.0mg/l). Meanwhile, VEGF-A expression reached its maximal expres- sion with 7.5 mg/l NTG, but gradually declined by incubation with higher doses of NTG. There was a linear relationship between NO level and NTG concentration, but no changes of ONOO- and ROS levels were found when EPCs were incu- bated with 0.3-7.5 mg/l NTG. However, ONOO- and ROS levels were significantly increased when incubated with 15 and 20 mg/l NTG. Our data demonstrated that moderate dose of NTG may stimulate the proliferative activities of EPCs isolated from CAD patients.  相似文献   

3.
4.
Immunophenotype of mobilized stem blood cells (CD34+) was studied in 29 patients with late post-traumatic spinal lesions. The CD34+ cells demonstrated different levels of expression of CD45, CD38, monomorphic determinants HLA-DR and gp130 epitopes. Most patients presented with a CD34+ cell fraction with no or low expression of common leukocytic antigen CD45. Only 2 patients had greater than 15 percent of HLA-DR-CD38- cells in the CD34+ fraction. A common transducer molecule of interleukin-6 family cytokines gp130 was expressed on stem (CD34+) cells in all the cases, 26 percent of the patients had an activated gp130 phenotype, i.e. a combination of C7+ and A1- epitopes.  相似文献   

5.
Recently, we reported the properties of CD31‐expressing cells in healthy individuals. However, the characteristics of CD31‐expressing cells derived from coronary artery disease (CAD) patients remain unknown. This study aimed to investigate the relationship between circulating CD31+ cells and CAD as well as their biological characteristics. Analysis with flow cytometry revealed that CD31+ cells (C‐CD31) from the peripheral blood (PB) of CAD patients exhibited low levels of T‐cell marker and high levels of macrophage marker compared with the PB‐CD31+ cells from healthy individuals (H‐CD31). In addition, the expression levels of multiple pro‐angiogenic and chemokine genes were significantly down‐regulated in C‐CD31. However, inflammatory gene IL‐1α was highly up‐regulated in C‐CD31. Patients with unstable angina (UA) had significantly more CD31+ cells in the PB than healthy control group (P < 0.001). Moreover, there were significant correlations between the number of CD31+ cells and cardiovascular (CV) disease activity (R = 0.318, P = 0.006) and the number of diseased coronaries (R = 0.312, P = 0.005). For the diagnostic category of UA, the area under curve was 0.803 (P < 0.001). In conclusion, C‐CD31 have impaired angiogenic potential and the number of circulating CD31+ cells were correlated with CV risk. These findings may contribute to the understanding of the pathogenesis of CAD.  相似文献   

6.
Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.  相似文献   

7.
Hemangioma is the most common soft-tissue tumor of infancy. Despite the frequency of these vascular tumors, the origin of hemangioma-endothelial cells is unknown. Circulating endothelial progenitor cells (EPCs) have recently been identified as vascular stem cells with the capacity to contribute to postnatal vascular development. We have attempted to determine whether circulating EPCs are increased in hemangioma patients and thereby provide insight into the role of EPCs in hemangioma growth. METHODS AND RESULTS: Peripheral blood mononuclear cells (PBMCs) were isolated from hemangioma patients undergoing surgical resection (N = 5) and from age-matched controls (N = 5) undergoing strabismus correction surgery. PBMCs were stained with fluorescent-labeled antibodies for AC133, CD34, and VEGFR2/KDR. Fluorescent-labeled isotype antibodies served as negative controls. Histologic sections of surgical specimens were stained with the specific hemangioma markers Glut1, CD32, and merosin, to confirm the diagnosis of common hemangioma of infancy. EPCs harvested from healthy adult volunteers were stained with Glut1, CD32, and merosin, to assess whether cultured EPCs express known hemangioma markers. Hemangioma patients had a 15-fold increase in the number of circulating CD34 AC133 dual-staining cells relative to controls (0.78+/-0.14% vs.0.052+/-0.017%, respectively). Similarly, the number of PBMCs that stained positively for both CD34 and KDR was also increased in hemangioma patients (0.49+/-0.074% vs. 0.19+/-0.041% in controls). Cultured EPCs stained positively for the known hemangioma markers Glut1, CD32, merosin. CONCLUSIONS: This is the first study to suggest a role for EPCs in the pathogenesis of hemangioma. Our results imply that increased levels of circulating EPCs may contribute to the formation of this vascular tumor.  相似文献   

8.
Abstract. Objectives : To generate non-haematopoietic tissues from mobilized haematopoietic CD133+ stem cells. Materials and methods : Mobilized peripheral blood CD133+ cells from adult healthy donors were used. In vitro ability of highly enriched CD133+ cells from mobilized peripheral blood to generate multipotent cells, and their potential to give rise to cells with characteristics of neuroectoderm, endoderm and mesoderm layers was investigated. Results : We found that a recently identified population of CD45+ adherent cells generated in vitro after culture of highly purified CD133+ cells for 3–5 weeks with Flt3/Flk2 ligand and interleukin-6 can, in presence of the appropriate microenvironmental cues, differentiate into neural progenitor-like cells (NPLCs), hepatocyte-like cells and skeletal muscle-like cells. We have termed them to be adult multipotent haematopoietic cells (AMHCs). AMHC-derived NPLCs expressed morphological, phenotypic and molecular markers associated with primary neural progenitor cells. They can differentiate into astrocyte-like cells, neuronal-like cells and oligodendrocyte-like cells. Moreover, AMHC-derived NPLCs produced 3,4-dihydrophenylalanine and dopamine and expressed voltage-activated ion channels, suggesting their functional maturation. In addition, AMHC-derived hepatocyte-like cells and skeletal muscle-like cells, showed typical morphological features and expressed primary tissue-associated proteins. Conclusion : Our data demonstrate that AMHCs may therefore serve as a novel source of adult multipotent cells for autologous replacement cell therapies.  相似文献   

9.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

10.
Dendritic cell differentiation from hematopoietic CD34+ progenitor cells   总被引:7,自引:0,他引:7  
Dendritic cells (DC) are the most powerful antigen presenting cells (APC) and play a pivotal role in initiating the immune response. In light of their unique properties, DC have been proposed as a tool to enhance immunity against infectious agents and in anticancer vaccine strategies. In the last few years, the development of DC has been extensively investigated. The present paper summarizes the most recent findings on the differentiation of myeloid DC from hematopoietic CD34+ progenitors and methods for DC generation in vitro. A better understanding of DC function has important implications for their use in clinical settings.  相似文献   

11.

Background

Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow.

Methodology/Principal Findings

CD34+ cells, c-Kit+/Sca-1+/Lin (KSL) cells, c-Kit+/Lin (KL) cells and Sca-1+/Lin (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others.

Conclusion

These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.  相似文献   

12.
Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization. However, it is poorly understood whether EPCs contribute to lymphangiogenesis. Here, we assessed differentiation of a novel population of EPCs towards lymphatic endothelial cells and their lymphatic formation. CD34+VEGFR‐3+ EPCs were isolated from mononuclear cells of human cord blood by fluorescence‐activated cell sorting. These cells expressed CD133 and displayed the phenotype of the endothelial cells. Cell colonies appeared at 7–10 days after incubation. The cells of the colonies grew rapidly and could be repeatedly subcultured. After induction with VEGF‐C for 2 weeks, CD34+VEGFR‐3+ EPCs could differentiate into lymphatic endothelial cells expressing specific markers 5′‐nucleotidase, LYVE‐1 and Prox‐1. The cells also expressed hyaluronan receptor CD44. The differentiated cells had properties of proliferation, migration and formation of lymphatic capillary‐like structures in three‐dimensional collagen gel and Matrigel. VEGF‐C enhanced VEGFR‐3 mRNA expression. After interfering with VEGFR‐3 siRNA, the effects of VEGF‐C were diminished. These results demonstrate that there is a population of CD34+VEGFR‐3+ EPCs with lymphatic potential in human cord blood. VEGF‐C/VEGFR‐3 signalling pathway mediates differentiation of CD34+VEGFR‐3+ EPCs towards lymphatic endothelial cells and lymphangiogenesis. Cord blood‐derived CD34+VEGFR‐3+ EPCs may be a reliable source in transplantation therapy for lymphatic regenerative diseases.  相似文献   

13.
Abstract

Natural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specific lysis depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/NKG2A-negative cells generated under different culture conditions showed strong and specific cytolytic activity which could have impact on further immunotherapeutic strategies.  相似文献   

14.
Natural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specific lysis depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/NKG2A-negative cells generated under different culture conditions showed strong and specific cytolytic activity which could have impact on further immunotherapeutic strategies.  相似文献   

15.
Coronary endothelial dysfunction is a powerful prognostic marker in patients with coronary artery disease (CAD) that is centrally related to oxidative inhibition of nitric oxide (NO)-dependent vascular cell signaling. Xanthine oxidase (XO), which both binds to and is expressed by endothelial cells, generates superoxide and hydrogen peroxide upon oxidation of purines. Whether inhibition of xanthine oxidase activity results in improved coronary vasomotor function in patients with CAD, however, remains unknown. We assessed coronary and peripheral (brachial artery) endothelial function in 18 patients (pts; 65+/-8 years, 86% male) with angiographically documented CAD, preserved left ventricular function, and non-elevated uric acid levels (233+/-10 microM). Patients received incremental doses of intracoronary acetylcholine (ACh; 10(-7) to 10(-5) microM), and minimal lumen diameter (MLD) and coronary blood flow (CBF) were assessed before and after intravenous administration of oxypurinol (200 mg). Oxypurinol inhibited plasma XO activity 63% (0.051+/- 0.001 vs 0.019+/- 0.005 microU/mg protein; p<0.01). In pts who displayed endothelial dysfunction as evidenced by coronary vasoconstriction in response to ACh (n=13), oxypurinol markedly attenuated ACh-induced vasoconstriction (-23+/- 4 vs -15+/- 4% at ACh 10(-5) microM, p<0.05) and significantly increased CBF (16+/-17 vs 62+/-18% at ACh 10(-5) microM, p<0.05), whereas in patients with preserved coronary endothelial function, oxypurinol had no effect on ACh-dependent changes in MLD (+2.8+/- 4.2 vs 5.2+/- 0.7%, p>0.05) or CBF (135+/-75 vs 154+/-61%, p>0.05). Flow-mediated dilation of the brachial artery, assessed in eight consecutive patients, increased from 5.1+/-1.5 before to 7.6+/-1.5% after oxypurinol administration (p < 0.05). Oxypurinol inhibition of XO improves coronary vascular endothelial dysfunction, a hallmark of patients with CAD. These observations reveal that XO-derived reactive oxygen species significantly contribute to impaired coronary NO bioavailability in CAD and that XO inhibition represents an additional treatment concept for inflammatory vascular diseases that deserves further investigation.  相似文献   

16.
17.
18.
To determine in the baboon model the identities and functional characteristics of endothelial progenitor cells (EPCs) mobilized in response to artery ligation, we collected peripheral blood mononuclear cells (PBMNCs) before and 3 days after a segment of femoral artery was removed. Our goal was to find EPC subpopulations with highly regenerative capacity. We identified 12 subpopulations of putative EPCs that were altered >1.75-fold; two subpopulations (CD146+/CD54-/CD45- at 6.63-fold, and CD146+/UEA-1-/CD45- at 12.21-fold) were dramatically elevated. To investigate the regenerative capacity of putative EPCs, we devised a new assay that maximally resembled their in vivo scenario, we purified CD34+ and CD146+ cells and co-cultured them with basal and mobilized PBMNCs; both cell types took up Dil-LDL, but purified CD146+ cells exhibited accelerated differentiation by increasing expression of CD31 and CD144, and by exhibiting more active cord-like structure formation by comparison to the CD34+ subpopulation in a co-culture with mobilized PBMNCs. We demonstrate that ischaemia due to vascular ligation mobilizes multiple types of cells with distinct roles. Baboon CD146+ cells exhibit higher reparative capacity than CD34+ cells, and thus are a potential source for therapeutic application.  相似文献   

19.
Background and aimsBecause of their pluripotency, human CD34+ peripheral blood progenitor cells (PBPC) are targets of interest for the treatment of many acquired and inherited disorders using gene therapeutic approaches. Unfortunately, most current vector systems lack either sufficient transduction efficiency or an appropriate safety profile. Standard single-stranded recombinant adeno-associated virus 2 (AAV2)-based vectors offer an advantageous safety profile, yet lack the required efficiency in human PBPC.MethodsA panel of pseudotyped AAV vectors (designated AAV2/x, containing the vector genome of serotype 2 and capsid of serotype x, AAV2/1–AAV2/6) was screened on primary human granulocyte–colony-stimulating factor (G-CSF)-mobilized CD34+ PBPC to determine their gene transfer efficacy. Additionally, double-stranded self-complementary AAV (dsAAV) were used to determine possible second-strand synthesis limitations.ResultsAAV2/6 vectors proved to be the most efficient [12.8% (1.8–25.4%) transgene-expressing PBPC after a single transduction], being significantly more efficient (all P < 0.005) than the other vectors [AAV2/2, 2.0% (0.2–7.3%); AAV2/1, 1.3% (0.1–2.9%); others, <; 1% transgene-expressing PBPC]. In addition, the relevance of the single-to-double-strand conversion block in transduction of human PBPC could be shown using pseudotyped dsAAV vectors: for dsAAV2/2 [9.3% (8.3–20.3%); P < 0.001] and dsAAV2/6 [37.7% (23.6–61.0%); P < 0.001) significantly more PBPC expressed the transgene compared with their single-stranded counterparts; for dsAAV2/1, no significant increase could be observed.ConclusionsWe have shown that clinically relevant transduction efficiency levels using AAV-based vectors in human CD34+ PBPC are feasible, thereby offering an efficient alternative vector system for gene transfer into this important target cell population.  相似文献   

20.
Number and function of endothelial progenitor cells (EPCs) are down-regulated in patients with coronary artery disease (CAD). Integrin-linked kinase (ILK) is a signal and adaptor protein that regulates survival of mature endothelial cells and vascular development.Here we show that EPC dysfunction in patients with CAD is paralleled by down-regulation of ILK while restoration of ILK expression rescues the migratory defect of CAD-EPCs. Human EPCs transduced with dominant-negative ILK (DN-ILK) display significantly reduced expression of CD34+/VEGFR-2+, DiI-Ac-LDL uptake, and Ulex europaeus lectin binding. Mechanistically, DN-ILK-transfected EPCs are characterized by decreased proliferation, while proliferation is increased in wild-type ILK-transfected EPCs. These effects are paralleled by changes in cyclin D1 expression, colony forming units, and cytoskeletal rearrangement. Functionally, ILK is necessary and sufficient for SDF-1-triggered migration and adhesion in EPCs.These data extend current knowledge about the role of ILK in EPC biology and implicate ILK as a therapeutic target in CAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号