首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

3.
Abstract.— The vascular‐plant flora of the Hawaiian Islands is characterized by one of the highest rates of species endemism in the world. Among flowering plants, approximately 89% of species are endemic, and among pteridophytes, about 76% are endemic. At the single‐island level, however, rates of species endemism vary dramatically between these two groups with 80% of angiosperms and only 6% of pteridophytes being single‐island endemics. Thus, in many groups of Hawaiian angiosperms, it is possible to link studies of phylogeny, evolution, and biogeographic history at the interspecific and interisland levels. In contrast, the low level of single‐island species endemism among Hawaiian pteridophytes makes similar interspecific and interisland studies nearly impossible. Higher levels of interisland gene flow may account for the different levels of single‐island endemism in Hawaiian pteridophytes relative to angiosperms. The primary question we addressed in the present study was: Can we infer microevolutionary patterns and processes among populations within widespread species of Hawaiian pteridophytes wherein gene flow is probably common? To address this broad question, we conducted a population genetic study of the native Hawaiian colonizing species Odontosoria chinensis. Data from allozyme analyses allowed us to infer: (1) significant genetic differentiation among populations from different islands; (2) historical patterns of dispersal between particular pairs of islands; (3) archipelago‐level patterns of dispersal and colonization; (4) founder effects among populations on the youngest island of Hawaii; and, (5) that this species primarily reproduces via outcrossing, but may possess a mixed‐mating system.  相似文献   

4.
Aim To test the hypothesis that plant species with a higher dispersal ability have a lower beta diversity. Location North America north of Mexico. Method Propagules of pteridophytes (ferns and their allies) are more vagile than propagules of spermatophytes (gymnosperms and angiosperms), and thus pteridophytes have a higher dispersal ability than do spermatophytes. The study area was divided into 71 geographical units distributed in five latitudinal zones. Species lists of pteridophytes and spermatophytes were compiled for each geographical unit. Three measures of beta diversity were used: βsim, which is one minus the Simpson index of similarity, βslope, which is the slope of the relationship between Simpson index and geographical distance, and β0.5‐distance, which is the distance that halves the similarity from its initial value. Results Average βsim is higher for spermatophytes than for pteridophytes, regardless of whether the data are analysed for the whole continent or for latitudinal zones. Average βsim decreases with increasing latitude for both spermatophytes and pteridophytes. The difference in average βsim between the two plant groups increases with increasing latitude, indicating that beta diversity decreases with increasing latitude faster for pteridophytes than for spermatophytes. When the Simpson index is regressed against geographical distance, the regression slope (βslope) is steeper for spermatophytes than for pteridophytes, and the slope decreases with increasing latitude for both plant groups. Similarly, β0.5‐distance was shorter for spermatophytes than for pteridophytes in each latitudinal zone and increased with increasing latitude for both plant groups. The results of the analyses using the three different measures of beta diversity are consistent. Main conclusions The fact that beta diversity is lower for pteridophytes with vagile propagules than for spermatophytes with less vagile propagules suggests that beta diversity is negatively related to dispersal ability.  相似文献   

5.
Pteridophytes (ferns and fern‐allies) represent the second‐largest group of vascular plants, but their global biogeography remains poorly studied. Given their functional biology, pteridophytes are expected to show a more pronounced relation to water availability and a higher dispersal ability compared to seed plants. We test these assertions and document the global pattern of pteridophyte richness across 195 mainland and 106 island regions. Using non‐spatial and spatial simple and multiple regression models, we analyze geographic trends in pteridophyte and seed plant richness as well as pteridophyte proportions in relation to environmental and regional variables. We find that pteridophyte and seed plant richness are geographically strongly correlated (all floras: r=0.68, mainland: r=0.82, island floras: r=0.77), but that the proportions of pteridophytes in vascular plant floras vary considerably (0–70%). Islands (mean=15.3%) have significantly higher proportions of pteridophytes than mainland regions (mean=3.6%). While the relative proportions of pteridophytes on islands show a positive relationship with geographic isolation, proportions in mainland floras increase most strongly along gradients of water availability. Pteridophyte richness peaks in humid tropical mountainous regions and is lowest in deserts, arctic regions, and on remote oceanic islands. Regions with Mediterranean climate, outstanding extra‐tropical centres of seed plant richness, are comparatively poor in pteridophytes. Overall, water‐energy variables and topographical complexity are core predictors of both mainland pteridophyte and seed plant richness. Significant residual richness across biogeographic regions points to an important role of idiosyncratic regional effects. Although the same variables emerge as core predictors of pteridophyte and seed plant richness, water availability is clearly a much stronger constraint of pteridophyte richness. We discuss the different limitations of gametophytes and sporophytes that might have limited the ability of pteridophytes to extensively diversify under harsh environmental conditions. Our results point to an important role of taxon‐specific functional traits in defining global richness gradients.  相似文献   

6.
A hypothesis is presented that most pteridophytes arrived in New Zealand relatively recently, by long-distance dispersal. The flora comprises 194 native species, of which 89 (46%) are endemic and 105 (54%) are widespread. Of the latter, 90% are shared with temperate Australasia, 53% with tropical regions, 14% with temperate southern Africa and 13% with the circum-Antarctic islands and South America. New Zealand has undergone such dramatic changes in location, land area, and topography since initial separation from Gondwana 85 Ma that it seems improbable that the 95 species shared with temperate Australasia could have remained conspecific throughout that time. Modern fossil and molecular evidence strongly suggest that many families of ferns had not even evolved prior to separation, and palynological evidence from New Zealand indicates that 78% of pteridophyte genera first appeared there only after separation from Gondwana. Present-day distributions in New Zealand suggest that ferns have greater dispersal potential than flowering plants, and that pteridophyte distributions are more heavily influenced by temperature, rainfall, and geothermal activity than by geological history. Most endemic pteridophyte species have a predominantly southern distribution pattern and are characteristic of cool, lowland to montane forest. Pteridophytes in the northern part of New Zealand show a lower level of endemism than elsewhere and tend to be widespread species that have arrived from temperate Australasian and tropical regions. There is also evidence that at least some pteridophytes have migrated from New Zealand to Australia. It is suggested that the hypothesis of long-distance dispersal of pteridophytes across the Tasman Sea could be tested by molecular techniques.  相似文献   

7.
The Ionian archipelago is the second largest Greek archipelago after the Aegean, but the factors driving plant species diversity in the Ionian islands are still barely known. We used stepwise multiple regressions to investigate the factors affecting plant species diversity in 17 Ionian islands. Generalized dissimilarity modelling was applied to examine variation in the magnitude and rate of species turnover along environmental gradients, as well as to assess the relative importance of geographical and climatic factors in explaining species turnover. The values of the residuals from the ISAR log10‐transfomed models of native and endemic taxa were used as a measure of island floristic diversity. Area was confirmed to be the most powerful single explanatory predictor of all diversity metrics. Mean annual precipitation and temperature, as well as shortest distance to the nearest island are also significant predictors of vascular plant diversity. The island of Kalamos constitutes an important plant diversity hotspot in the Ionian archipelago. The recent formation of the islands, the close proximity to the mainland source and the relatively low dispersal filtering of the Ionian archipelago has resulted in islands with a flora principally comprising common species and a low proportion of endemics. Small islands keep a key role in conservation of plant priority sites.  相似文献   

8.
In this review, we explore our current understanding of the fern and lycophyte diversity occurring in the Eastern Afromontane Biodiversity Hotspot (EABH). The review explores the species diversity of this region in the context of the Afromadagascan pteridophyte diversity based on an exhaustive species list assembled in the synopsis of Afromadagascan pteridophytes published by Roux in 2009. The list was updated by incorporating recent progress in our understanding of the taxonomy and phylogeny of these plants. Evidence for a distinct pteridophyte flora occurring in the East African mountain region was discovered using ordination and clustering analyses. This EABH floras shares links to other Afromadagascan pteridophyte floras such as the one in the tropical lowland forests of central and western Africa. These floras share the dominance of species that preferably occur in humid climates whereas other African pteridophyte floras tend to contain a higher proportion of xeric adapted ferns. The phylogenetic composition of the EABH pteridophyte flora was assessed by comparing global versus local proportion of orders, families, and genera. This analysis revealed distinct patterns that are partly caused by the radiation of Blotiella and Triplophyllum besides selective colonization of species pre-adapted to Afromadagascan climates. In situ speciation in the East African tropical mountains may have contributed to the global diversity of widespread genera such as Asplenium and Pteris. In summary, this is the first comprehensive attempt to assess the pteridophyte diversity of the East African mountains providing the framework for future studies on their conservation, ecology, and evolution.  相似文献   

9.
Aim Speciation processes on islands are still poorly understood. Previous studies based on the analysis of distribution data from checklists found that the flora of the Azores archipelago differs from other island floras in the exceptionally low number of radiations and the low number of single‐island endemics. The general mechanism(s) responsible for these apparently unique patterns remained unclear. One possible explanation for the distinctiveness of the Azorean endemic flora is the lack of a consistent and critical taxonomic framework for the floras of the Atlantic archipelagos. In this study, molecular variation within a range of Azorean endemic plant lineages was analysed to determine whether inadequacies in the current taxonomy of endemics might be an explanation for the unusual diversity patterns observed in the endemic flora of the Azores. Location Azores archipelago. Method Sixty‐nine populations of eight endemic species or subspecies belonging to five genetic lineages were sampled from all Azorean islands but one. Nuclear and plastid DNA regions were sequenced, and relationships among internal transcribed spacer (ITS) region ribotypes established using statistical parsimony. Results Molecular diversity patterns differ from current taxonomic groupings, with all lineages comprising previously overlooked genetic entities. Main conclusions Recognition as distinct taxa of the genetically distinct entities discovered in this study would drastically change the diversity patterns and make them more similar to those of other Atlantic archipelagos. The results serve to highlight that current knowledge of endemic diversity on oceanic islands may be far from complete, even in relatively well‐known groups such as angiosperms. This limitation is rarely considered in macroecological and evolutionary studies that make use of data from taxonomic checklists to draw inferences about oceanic island biogeographic processes.  相似文献   

10.
黄土高原蕨类植物区系特点的初步研究   总被引:3,自引:3,他引:0  
对黄土高原的蕨类植物区系组成、分类及其特点进行了研究。结果表明,黄土高原有蕨类植物26科、53属、184种及3变种,种类较多的科有蹄盖蕨科(30种)、鳞毛蕨科(26种)、水龙骨科(20种)、铁角蕨科(12种)、卷柏科(12种)、中国蕨科(11种)及裸子蕨科(10种)等。这7科的种类共计121种,占本地区总种数的64.71%。种类较多的属有鳞毛蕨属(13种)、郑柏属(12种)、耳蕨属(11种)、铁角蕨属(11种)、蹄盖蕨属(10种)、瓦韦属(10种)、铁线蕨属(9种)及岩蕨属(9种)等。这8属的种类共计85种,占本地区总种数45.46%,黄土高原蕨类植物区系属的地理成分可划分为15个分布区类型。热带、亚热带分布类型的有18属,占总属数的41.86%,北温带及寒带分布类型的有22属,占总属数(世界分布属除外)的51.16%,其中,亚洲分布类型的最多,计有16属,占总属数的37.20%,表明黄封同原蕨类植物区系是温带类型,区系地理成分以华北区蕨类植物为主,同时也集中了华中、华东、东北、西北以及西南的蕨类植物。而中国特有的分布属只有1属。  相似文献   

11.
The Bahamian archipelago consists of approximately 2,400 islands occurring in the Atlantic Ocean off the coasts of Florida, Cuba, and Hispaniola. In 1982 Donovan Correll and Helen Correll published the most current synopsis of the floristic diversity of this island chain. Their publication cited a total of 1,371 vascular plant species of which 114 seed plants were listed as endemic to the archipelago (~8 % of the native flora). In the last 30 years, additional herbarium collections and taxonomic studies have shown that a number of species previously indicated to be endemic to these islands also occur in other regions or have been taxonomically merged into other species. The current number of species considered endemic to the Bahamian archipelago is 89 (~6 % of the total flora). There are 50 endemic species that have a known distribution on one (31 species) or two island groupings (19 species). Biogeographical analyses of endemic plant distributions shows three distinct clusters of species: southern, central, and the northern islands, with a fourth cluster that includes islands with a small area and one medium size island that seems that has been underexplored (i.e., Little Inagua). We anticipate that understanding the conservation status of endemic species and their distributions will help to develop legislation to preserve this Bahamian natural heritage.  相似文献   

12.
Introduced rodents are responsible for ecosystem changes in islands around the world. In the Galapagos archipelago, their effects on the native flora and fauna are adverse, including the extinction of endemic rodents in some islands and the reduction in the reproductive success of the Galapagos petrel (Pterodroma phaeopygia) in its nesting zones. Understanding the feeding behavior of introduced rodents and their trophic interactions with native and non-native species on islands, can assist in the design of management strategies and conservation plans of invasive and endemic species respectively. Four petrel nesting colonies were monitored during June 2013 on San Cristóbal Island (El Plátano, El Junco, San Joaquín, and La Comuna). The feeding habits of black rats were evaluated by analyzing stomach contents and stable isotopes in hair. Three species of introduced rodents were captured. R. rattus was the most abundant at all sites (n=43, capture success (CS) = 55.8%), followed by the house mouse, Mus musculus (n = 17, CS = 37.8%), and the Norwegian rat, R. norvegicus (n = 4, CS = 4.5%), captured only at La Comuna. The omnivorous black rat ate mostly plants (98%) and arthropods (2%). Intact seeds of Miconia robinsoniana were the main food at all sites (relative abundance=72.1%, present in 95% of the analyzed stomachs), showing the black rats’ possible role in the archipelago as endemic seed dispersers. There was no evidence of petrel’s intake; however, its possible consumption is not discarded at all. The δ15N and δ13C analysis corroborated the primarily herbivorous diet of black rats. The isotopic signatures of the three rodent species reflect the inter- and intra-specific differential use of food resources. Black rat showed a wider diet in La Comuna, which was related to a lower availability of its primary prey and its ability to adapt to the available resources in its habitat.  相似文献   

13.
河北省塞罕坝地区种子植物区系的过渡性分析   总被引:3,自引:0,他引:3  
河北省塞罕坝地处森林区向草原区的过渡区域,植物种类丰富,共有种子植物75科318属713种或变种。塞罕坝植物区系的地理成分以北温带分布为主,占全区种子植物属数的47.65%。其次是世界分布和旧世界温带分布,分别占全区种子植物属数的15.41%和14.38%,其它分布的植物属较少。植物生活型以地面芽植物为主,高位芽植物、地上芽植物、地面芽植物、地下芽植物和一年生植物分别占全区种子植物的16.27%、1.54%、40.95%、25.39%和15.85%。通过与周围5个地区的主分量分析,塞罕坝植物区系处在森林区植物区系与草原区植物区系之间,具有明显的过渡性。塞罕坝植物区系与草原区锡林河流域和森林区松山植物区系的关系比较密切。  相似文献   

14.
Increasing demand for food, fuel and fibre promotes the intensification of land-use, particularly in areas favourable for agricultural production. In less-favourable areas, more wildlife-friendly farming systems are often either abandoned or under pressure of conversion, e.g. for bioenergy production. This raises the question, to which extent areas of different agronomic potential contribute to regional biodiversity. To approach this question on a regional scale, we established our study within a region where sites of high and low agronomic potential (AP) alternate on a small spatial scale. We selected 13 high-AP and 13 low-AP grasslands to quantify the contribution of these classes to the regional diversity of four epigeic arthropod taxa (ants, springtails, functional groups of ground beetles, and spiders). The regional diversity (γ) was partitioned into species richness per site (α-diversity), diversity among sites within one class (βwithin-diversity), and diversity between the two classes (βbetween-diversity). The β-diversity generally accounted for the largest share of the γ-diversity, with patterns of diversity components being highly taxon- and class-specific. Carnivorous carabids had a higher α-diversity at high-AP sites. Ants, springtails, and cursorial spiders had a higher βwithin-diversity in low-AP grasslands. Low-AP sites also harboured many more species that occurred exclusively in one grassland class. We conclude that grasslands that may be unfavourable for agricultural production contributed more to regional diversity of epigeic arthropods than favourable grasslands. We therefore suggest that future agricultural schemes should promote arthropod biodiversity by specifically targeting agri-environment schemes or other wildlife-friendly farming approaches to areas of low agronomic potential, since this bears the greatest potential to preserve a comparatively high species turnover (β-diversity) and in consequence high regional diversity.  相似文献   

15.
在对广东荷包岛植被全面踏查的基础上,结合其植物区系成分及组成特征分析,对该区系特点进行了系统研究。结果显示,该岛共有维管束植物135科370属541种,其中,蕨类植物22科28属40种,种子植物113科342属501种;野生种子植物共有465种,栽培植物共有36种。在属级水平上,荷包岛植物区系以热带成分占绝对优势,热带性质属占野生植物非世界广布属的87.80%;在种级水平上,中国特有种74种,占非世界总种数的15.91%。泛热带分布、旧世界热带分布、热带亚洲至热带大洋洲分布、热带亚洲分布4种分布类型构成了该植物区系的主体。将荷包岛与我国东南沿海其他岛屿(澳门、香港东平洲岛、浙江舟山群岛、上海崇明岛)的植物区系进行比较发现,该岛植物区系表现出更强的热带性质,与澳门植物区系性质最为接近。  相似文献   

16.
Plant invasions are particularly noticeable on oceanic islands. For many ecological or evolutionary phenomena, oceanic islands offer advantages in comparison to continental regions, because they are often simpler systems. The Juan Fernández (Robinson Crusoe) Islands, located 667 km west of continental Chile, provide an especially favorable case study of plant invasions on an oceanic archipelago. They have little flora, no influence from aboriginal peoples, and good historical and recent documentation of flora, vegetation and human impacts. The total flora of the archipelago consists of 441 vascular plants, of which 209 are native (125 of them endemic) and 232 are aliens. Many alien species exist on the Juan Fernández Archipelago, but three shrubs are particularly invasive: Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. About 15% of the total area of the island has been impacted by at least one of these shrubs. In addition, the herbaceous Acaena argentea, now occurs at high abundance in 12% of the total area of the island. Comparisons of earlier and recent surveys of vegetation reveal that the area impacted by Aristotelia, Rubus, and Ugni molinae has increased tremendously. Among the most frequent aliens are Euro-Mediterranean taxa, also present on other archipelagos. A few aliens that are serious invasives on other archipelagos have been recently observed near San Juan Bautisata, the only village on the island. Effective measures involving stronger monitoring and sanitation of incoming materials (foodstuffs, building materials, etc.), cutting or poisoning of invasives, and reseeding with native species, are necessary to help preserve the native and endemic flora (and biota) of these islands.  相似文献   

17.
Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.  相似文献   

18.
Ebihara A  Nitta JH  Ito M 《PloS one》2010,5(12):e15136

Background

DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking.

Methodology/Principal Findings

The Japanese pteridophyte flora (733 taxa including subspecies and varieties) was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA) with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0%) taxa for rbcL and 617 (84.2%) taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances) did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52%) was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only.

Conclusions/Significance

This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially anticipated to be helpful for identification of non-hybridizing gametophytes.  相似文献   

19.
南海岛屿种子植物区系地理的研究   总被引:15,自引:2,他引:13  
本文通过实地考察,广泛收集前人的研究资料,概述了南海岛屿地区的自然条件和植被,对南海岛屿种子植物的区系组成、特点、分布区类型、特有现象和替代现象等进行了较详细的分析,并与邻近植物区系进行了比较研究。同时,根据区内植物分布的特点和自然条件特征划分为5个植物区系小区,最后对南海岛屿地区植物区系的起源与演化进行了讨论。  相似文献   

20.
Biotic homogenization reduces the regional distinctiveness of biotas with significant ecological and evolutionary consequences. The outcome of this process may depend on the spatial scale of inquiry (both resolution and extent), the selected taxon and dissimilarity index as well as on the contribution of species extinctions and introductions. In the present research, we try to disentangle the effects of these factors on homogenization patterns comparing six taxonomic groups (pteridophytes, spermatophytes, breeding birds, mammals, reptiles and non-marine molluscs) within and between five Atlantic archipelagos of the Macaronesian Region. Taxonomic homogenization was analyzed by partitioning β-diversity into spatial turnover of species composition and nestedness. Total compositional change was divided into changes related to extinctions/extirpations of native and to introductions of alien species. Analyses were carried out at two different spatial resolutions (island versus archipelago unit) and geographic extents (within each archipelago and across the whole Macaronesian Region). Pteridophytes and reptiles tended to taxonomic differentiation, while mammals and molluscs showed homogenization regardless of scale and resolution. For spermatophytes, the most species-rich group, taxonomic heterogenization traded off with homogenization from the local to regional extent. Birds revealed heterogenization at the island, but not at the archipelago resolution. Extirpations of native species generally led to homogenization at the local extent, whereas the effect of alien introductions varied according to taxon and spatial scale. Furthermore, overall changes in species pool similarities were driven both by spatial turnover and nestedness. We demonstrate that biotic homogenization after human colonization within Macaronesia clearly depended on taxon, spatial scale and the dissimilarity measure. We suggest that homogenization of island biotas is first conditioned by initial dissimilarity related to taxon characteristics, such as dispersal capacity or endemicity, evolutionary processes, archipelago configurations and environmental variation along spatial scales. Thus, similarity change is the outcome of the impacts of number, proportion and distribution type of lost and gained species. Rare extirpated and common introduced species homogenize, while common extirpated and rare introduced species differentiate island biotas. Partitioning of beta diversity helps to improve our understanding of the homogenization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号