首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species relative importance distribution pattern changes of the ground-beetle assemblages were analyzed along elevation strata of Tenerife Island. The species importance estimates were expressed in terms of (i) activity density, as total catching of ground-beetle adults obtained with pitfall traps over each elevation stratum for one year, and (ii) biomass, as the total number of specimens caught multiplied by a mean dry weight in milligrams for the species. The K-dominance curves indicated moderate or insignificant perturbances, and patterns were sigmoidal following a truncated log-normal slightly skewed to the right, by using the Kolmogoroff–Smirnov test. The results also showed perceptible deviations from the truncated log-normal pattern (p < 0.05) mainly with biomass data. The disturbance through successional progress and perturbances by environmental warming and cooling could be assumed by deviations from the log-normal distribution among species. Thus, assuming that the assemblages of strata exhibited generally low similarity, the results will be arranged around the following four tracks: (1) the assemblage progressed toward highest abundances, dominance and a low-diversity equilibrium state in the cloud montane stratum, (2) the assemblage was subject to severe warming and dryness, lowest abundances with dominance in biomass, such that log-normal pattern was not shown in the basal stratum, (3) a non-equilibrium state in summer-xeric montane stratum maintained the highest diversity and an archetypical log-normal pattern was described for assemblage, and (4) assemblage stressed by cold semi-arid climate showed a certain tendency to log-normality and decrease in the diversity for the summit stratum. These results indicate that variation in ground-beetle assemblages by way of advanced evolutionary and adaptive trade-offs can best be understood as consequences of selective pressures by adverse climatic changes – perturbances – or seasonal climatic fluctuations and population dynamics – disturbances – according to the elevation stratum, which can generate different deviations from the log-normal pattern; these are more directly related to magnitude and frequency of local natural disturbance regimes and the productivity of the ecosystem.  相似文献   

2.
The effect of plant succession on slope stability   总被引:1,自引:0,他引:1  
The aim of this field investigation was to study the enrichment of biodiversity of the slope at an early phase of succession, initiated by selected pioneers, and to study how this enrichment related to enhancement of the slope stability. Four experimental plots, with differing plant pioneers and number of species (diversity), were designed in order to assess the effects of plant succession on slope stability. Plant growth pattern was assessed by observing the increment in species diversity (number), species frequency and plant biomass. Higher vegetation biomass in a mixed culture situation (LLSS) in the field with Leucaena leucocephala as a pioneer, marked an increase in species diversity after 24 months of observation. In contrast, G (grasses and legume creepers) plot revealed the slowest rate of succession and the lowest above-ground biomass amongst the plots. The mixed-culture plot without L. leucocephala (SS) had also shown a lower biomass, a similar phenomenon observed in a plot grown by L. leucocephala (LL) with low plant diversity. Consequently, these plant growth patterns gave a positive effect on slope stability where the regression study showed that the shear strength was much affected by plant biomass. Meanwhile, throughout the succession process in LLSS plot, root length density reached the highest value amongst the plots, 23 Km m?3. In relation to this, the saturation level of the slope indicates the unsaturated condition of the soil which resulted in the enhancement of both soil penetrability and soil shear strength of the plot. These attributes reveal a strong positive relationship between the process of natural succession and the stability of slopes.  相似文献   

3.
Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500 m to the mid-alpine region at 900 m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.  相似文献   

4.
We studied the natural colonisation of new species in experimental grasslands varying in plant species richness (from 1 to 60) and plant functional group richness (from 1 to 4) in either regularly or never weeded subplots during the first 3 years after establishment. Sown species established successfully, with no differences in species richness or their relative abundances between the regularly and never weeded subplots during the study period. Aboveground biomass of sown species increased with increasing sown species richness in both treatments. While a positive relationship between sown species richness and total aboveground biomass (including colonising species) existed in the 2nd year after sowing in the regularly and never weeded subplots, this positive relationship decayed in the 3rd year in the never weeded subplots because of a higher biomass of colonising species in species-poor mixtures. Total aboveground biomass varied independently of total species richness 3 years after sowing in both treatments. Jaccard similarity of coloniser species composition between regularly and never weeded subplots decreased from the 2nd to the 3rd year, indicating a divergence in coloniser species composition. Coloniser immigration and turnover rates were higher in regularly weeded subplots, confirming that weeding counteracts species saturation and increases the chance that new colonisers would establish. Although our study shows that low diversity plant communities are unstable and converge to higher levels of biodiversity, the effects of initially sown species on community composition persisted 3 years after sowing even when allowing for succession, suggesting that colonising species mainly filled empty niche space.  相似文献   

5.
Nature conservation and ecological restoration crucially depends on the knowledge about spatial patterns of plant species that control habitat conversion and disturbance regimes. Especially, species abundances are capable of indicating early development tendencies for setting habitat management strategies. This study demonstrates the transfer of field spectroscopy to hyperspectral imagery to map multiple plant species abundances in an open dryland area using two imaging spectrometers in two different phenological phases. We show that species abundances can partially be described by multiple gradients forming different coordinates in a contour map. For this purpose, species abundances were projected into an ordination space using non-metric multidimensional scaling and subsequent spatial interpolation. It was demonstrated that different gradients can be modeled in a Partial Least Squares regression framework resulting in distinct spectral features for certain gradient directions. We combine both objectives in a multiobjective NSGA-II procedure to maximize the quantitative determination of species abundance in ordination and spectral predictability in related field spectra, simultaneously. NSGA-II was finally used to select optimal spectral models for n = 35 single species that were transferred to hyperspectral imagery for mapping purpose. We can show that abundance predictabilities can be evaluated on the basis of individual model performances that hold different spectral features for each species in a designated phenological phase. Finally, we present spatially explicit multi-species maps for the best n = 18 and abundance maps for n = 8 models that could be linked to patterns of species richness, coexistence, succession stages and habitat type conditions.  相似文献   

6.
《Ecological Complexity》2005,2(2):159-174
The tree migration model TreeMig is presented as an example for modeling a complex ecological system. The model was derived from a forest gap model, reducing the gap models’ complexity by model aggregation and includes elements for showing complex behavior: many state variables, non-linear process functions, feedbacks and spatial interactions. Additionally, the model depends on external variables, namely climate. In a case study, the tree migration in the highly structured environment of the region of Valais in the Swiss Alps during the Holocene was simulated. The simulations were run on a grid with 1 km × 1 km resolution with a yearly time step. A scenario of temperature-anomalies in the Holocene, spatially interpolated climate data and times of species immigration into the simulation area was used as input. The simulation results were evaluated with regard to the spatio-temporal species composition and complexity, i.e. species diversity and spatio-temporal unevenness. Two indices of complexity were calculated from the simulated species biomasses in space and time: the Shannon–Weaver index for species diversity and an index of spatio-temporal complexity (unevenness) of total biomass. Both indices depended on climate, but in different ways. Tree species diversity was positively related to degree day sum, i.e. was high at low and smaller at high altitudes. Spatio-temporal complexity in turn was high at the alpine timberline, but very low at lower elevations. Increased complexity independent from climate occurred during migration waves into the simulation area. Spatio-temporal complexity was high when the first species colonized the region. Tree species diversity changed during the immigration wave of each immigrating species, particularly that of the dominant species Picea abies. At the fronts of the immigration waves in particular, spots of increased diversity appeared. However, no formation of stable patchy patterns was observed at the studied scale. The standard simulation, reflecting climate patterns and endogenous processes such as local dispersal, long-range migration and succession was compared to simulations, where single or all endogenous processes were excluded. The dissimilarities between the species compositions of these simulations indicated that after immigration of dominant species succession and migration strongly influence the species pattern, succession over centuries and migration over millennia. I conclude that the species pattern and its complexity, as shown by the model simulations, were to a great extent determined by external factors and their complexity. After changes in the boundary conditions, succession and migration had a strong influence.  相似文献   

7.
Biological indicators based on fish assemblage characteristics are used to assess stream condition worldwide. Fish-based bioassessment poses challenges in Southern New England, the USA, due to the effects of within-watershed thermal gradients on fish assemblage types, low regional species richness, and lack of minimally disturbed sites. Dual multi-metric indices (MMI) of biological condition were developed for wadeable streams based on fish assemblage characteristics sampled across watershed landscapes with varying levels of human disturbance. A coldwater MMI was developed using streams with drainage area of ≤15 km2, and a mixed-water MMI for streams with drainage areas of >15 km2. For each MMI development, candidate metrics represented by ecological classes were sequentially tested by metric range, within-year precision, correlation with stream size, responsiveness to landscape-level human disturbances, and redundancy. Resultant coldwater and mixed-water MMI were composed of 5 and 7 metrics, respectively. Stream sites tended to score similarly when the two MMI were applied to transitional sites, i.e., drainage areas of 5–40 km2. However, some sites received high scores from the mixed-water MMI and intermediate scores from the coldwater MMI. It was thus difficult to ascertain high-quality mixed-water streams from potential coldwater streams which currently support mixed-water assemblages due to ecological degradation. High-quality coldwater streams were restricted to stream sites with drainage areas ≤15 km2. The newly developed fish-based MMI will serve as a useful management tool and the dual-MMI development approach may be applicable to other regions with thermal gradients that transition from coldwater to warmwater within watersheds.  相似文献   

8.
The distribution and ecology of the assemblages of myxomycetes associated with four different microhabitats were studied in Big Bend National Park in Texas. During Mar. 2005, twelve plots (30 × 30 m) were established along an elevational gradient that extended from 564 to 1807 m. Samples of aerial bark from dead and living trees, aerial litter (dead but still attached plant parts), ground litter (fallen dead plant parts) and ground bark (fragments of fallen bark) were collected from these plots, which encompassed all of the major vegetation types found in the Park. Four hundred forty-seven moist chambers were prepared, and 95.8 % (428) produced some evidence (either fruit bodies or plasmodia) of myxomycetes. A total of 71 species were recorded, with ground litter yielding most (45 species). Aerial litter, aerial bark and ground bark yielded 44, 39 and 37 species, respectively. Species abundance distribution measures (diversity, dominance and similarities) varied among the four microhabitats as well as among the major vegetation types. Canonical Correspondence Analysis (CCA) showed that species distribution patterns were closely related to: (1) the major environmental-complex gradients associated with differences in elevation/temperature/moisture conditions that occur from one locality to another; and (2) the different types of microhabitat.  相似文献   

9.
Owl pellets have long been used to analyze communities of small mammals, while analogous analyses of faeces of mammal carnivores are not available. We demonstrate that common genet (Genetta genetta) scats can be used as a reliable method to sample small mammal communities and to monitor their variations. We have compiled data on 6350 small mammal remains of 18 species found in scats from 51 different latrines in a 1200 km2 area of northeastern Spain. Genet scats sampled effectively 95.6% of the small mammal species ranging in size from 2.7 to 385 g. Spatial patterns of diet composition along environmental gradients of elevation, climate and land-use matched expected changes in small mammal communities along these gradients according to ecological requirements of prey species. Frequencies of occurrence of prey in genet scats were strongly correlated with frequencies of occurrence in barn owl (Tyto alba) pellets. Genet scats included two forest species not preyed upon by owls, whereas only one species was not preyed upon by genets. Forests species were more frequent in genet than in barn owl diets after correcting for environmental effects, whereas the opposite was true for open-habitat and synanthropic species. Scats of generalist carnivores can be used to estimate the spatial patterns of distribution and abundance of small mammal communities. Genet scats in fact overcome some of the limitations of more traditional sampling methods (live-trapping and owl diets), as genets were less selective and their diets reflect more accurately changes in community composition.  相似文献   

10.
11.
Phytosociological attributes of plant species and associated environmental factors were measured in order to identify the environmental gradients of major plant communities in the Naran Valley, Himalayas. The valley occupies a distinctive geographical setting on the edge of the Western Himalaya near the Hindukush range and supports a high biodiversity; pastoralism is the main land use. There have been no previous quantitative ecological studies in this region. This study was undertaken to (i) analyze and describe vegetation using classification and ordination techniques, (ii) identify environmental gradients responsible for plant community distributions and (iii) assess the anthropogenic pressures on the vegetation and identify priorities for conservation. Phytosociological characteristics of species were measured alongside environmental variables. A total of 198 species from 68 families were quantified at 144 stations along 24 transects across an elevation range of 2450–4100 m. Correspondence Analysis techniques i.e., Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) were used to determine vegetation–environment relationships. Results show vegetation changes with altitude from moist-cool temperate communities characterized by woody species, to more dry-cold subalpine and alpine herbaceous communities. Plant species diversity is optimal at middle altitudes (2800–3400 m); at lower altitudes (2400–2800 m) it is reduced by anthropogenic impacts and at higher altitudes (3400–4100 m) by shallow soils and high summer grazing pressure. A large number of plant species of conservation concern were identified in the study and an assessment made of the main threats to their survival.  相似文献   

12.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

13.
We conducted a 55-day long camera-trap survey in the Yungas subtropical forest in NW Argentina, to assess the effect of human accessibility, conservation status of the area, domestic animals and elevation on the diversity and composition of the large and medium-sized native terrestrial mammal assemblage. We deployed 24 camera-trap stations at distances of ~2 km from each other. The study area is covered by continuous forest and has its center in the small community of Acambuco, in the Acambuco Provincial Reserve. The main economic activity in the area is oil/gas exploitation. Local residents raise cattle, hunt and use timber and non-timber forest products. The human impact was indirectly measured with an accessibility cost model. We used a multiple regression ANCOVA to assess the effect of elevation (range: 628–1170 masl), accessibility, protection status (reserve vs not) and frequency of records of domestic animals on the native mammal species richness and on a nonmetric multidimensional scaling (NMDS) ordination based on the frequency of records of the native mammals recorded at >3 camera-trap stations. We recorded 15 species of native mammals. Native mammal species richness decreased with elevation. Elevation was correlated with NMDS axes. Other predictive variables had no effect on species richness or the NMDS ordination, probably as a result of the relatively narrow range of conditions assessed in this study. The effect of elevation on mammal assemblages should be considered in landscape planning processes aimed at promoting biodiversity conservation.  相似文献   

14.
Changes in macroalgae assemblages over more than a decade are described for Sepetiba Bay, Brazil. Variations in macroalgae abundances and functional diversity were compared with older data to test the hypothesis that their diversity decreases following anthropogenic stress that negatively impact environmental characteristics. Four field sampling excursions were undertaken at two different sites from December/2012 to May/2014. Destructive sampling per effort used six box cores (25 × 25 cm) distributed randomly along a shallow sublittoral rocky shore. Biomass was used to quantify macroalgae assemblages identified to the species level. Multivariate analyses demonstrated decreases in total biomass at both sites as well as changes in community physiognomies. The predominant corticated algae found were classified as Ecological Status Group IIA, characteristic of sites in the process of degradation and indicating that anthropogenic stress had negatively affected the macroalgae communities as evaluated by the Ecological Evaluation Index.  相似文献   

15.
16.
The ciliate community structure and seasonal dynamics in a solar saltern of the Yellow Sea were studied based on 4 sampling dates and 8 stations with salinities from 27.7‰ to 311.0‰. The effects of the type and concentration of the fixative used (Lugol's and Bouin's) were tested at the first sampling date. Fixative type and fixative concentration had significant effects on ciliate abundance and biovolume, with 1% Lugol's giving the best results. A detailed investigation using live observations and protargol staining techniques revealed a total of 98 morphospecies from 8 sampling stations. There was obvious seasonal variation in species composition at most of the stations, but this tended to be less distinct with increasing salinity, as the dominant ciliate group shifted from oligotrichs to heterotrichs. Ciliate abundance varied from 4.40×101 to 2.11×105 cells l?1 and biomass ranged between 2.39 and 9.87×103 μg C l?1 (at a salinity of 147.6‰). Both abundance and biomass decreased abruptly when salinity exceeded 100–150‰. Statistical analyses suggested that the dynamics of ciliate abundance and biomass were regulated by both salinity and by season, but those of diversity and species richness were mainly controlled by salinity and both significantly decreased with increasing salinity.  相似文献   

17.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

18.
Wu F Z  Yang W Q  Lu Y J 《农业工程》2009,29(3):192-198
Dense dwarf bamboo population is a structurally and functionally important component in many subalpine forest systems. To characterize the effects of stem density on biomass, carbon and majority nutrients (N, P, K, Ca and Mg) distribution pattern, three dwarf bamboo (Fargesia denudata) populations with different stem densities (Dh with 220 ± 11 stems m?2, Dm with 140 ± 7 stems m?2, and Dl with 80 ± 4 stems m?2, respectively) were selected beneath a bamboo-fir (Picea purpurea) forest in Wanglang National Nature Reserve, Sichuan, China. Leaf, branch, rhizome, root and total biomass of dwarf bamboo increased with the increase of stem density, while carbon and nutrient concentrations in bamboo components decreased. Percentages of below-ground biomass and element stocks to total biomass and stocks decreased with the increase of stem density, whereas above-ground biomass and element stocks exhibited the opposite tendency. Moreover, more above-ground biomass and elements were allocated to higher part in the higher density population. In addition, percentages of culm biomass, above-ground biomass and element stocks below 100 cm culm height (H100) increased with the increase of stem density, while percentages of branch and leaf biomass below H100 decreased. Pearson’s correlation analyses revealed that root biomass, above-ground biomass, below-ground biomass and total biomass significantly correlated to leaf biomass in H100?200 and total leaf biomass within high density population, while they significantly correlated to leaf biomass in H50?150 within low density population. The results suggested that dwarf bamboo performed an efficient adaptive strategy to favor limited resources by altering biomass, carbon and nutrients distribution pattern in the dense population.  相似文献   

19.
《Journal of Asia》2014,17(2):161-167
Two diversity patterns (hump-shaped and monotonic decrease) frequently occur along altitude or latitude gradients. We examined whether patterns of ant species richness along altitudes in South Korea can be described by these patterns and whether ranges of ant species follow Rapoport's altitudinal rule. Ants on 12 high mountains (> 1100 m) throughout South Korea (from 33° N to 38° N) were surveyed using pitfall traps at intervals of 200–300 m altitude. The temperatures at the sampling sites were determined from digital climate maps. Ant species richness decreased monotonically along the altitudinal gradient and increased along the temperature gradient. However, species richness of cold-adapted species (highland species) showed a hump-shaped pattern along altitude and temperature gradients. The altitude and temperature ranges of ant species followed Rapoport's rule. Sampling site temperature ranges were significantly correlated with coldness. Therefore, Rapoport's rule can be explained by high cold-tolerance of species inhabiting high altitudes or latitudes.  相似文献   

20.
The current analyses of vegetation were aimed to study the different effects of environmental variables and plant species and communities interaction to these variables, identified threats to local vegetation and suggestion for remedial measures in the Mount Eelum, Swat, Pakistan. For assessment of environmental variability quantitative ecological techniques were used through quadrats having sizes of 2 × 2, 5 × 5 and 10 × 10 m2 for herbs, shrubs and trees respectively. Result of the present study revealed 124 plant species in the study area. Canonical Correspondence Analysis (CCA) was used to analyze the ecological gradient of vegetation. The environmental data and species abundance were used in CANOCO software version 4.5. The presence absence data of plant species were elaborated with Cluster and Two Way Cluster Analysis techniques using PC-ORD version 5 to show different species composition that resulted in five plant communities. Findings indicate that elevation, aspect and soil texture are the strongest variables that have significant effect on species composition and distribution of various communities shown with P value 0.0500. It is recommended to protect and use sensibly whole of the Flora normally and rare species particularly in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号