首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Targeted transgene addition can provide persistent gene expression while circumventing the gene silencing and insertional mutagenesis caused by viral vector mediated random integration. This protocol describes a universal and efficient transgene targeted addition platform in human iPSCs based on utilization of validated open-source TALENs and a gene-trap-like donor to deliver transgenes into a safe harbor locus. Importantly, effective gene editing is rate-limited by the delivery efficiency of gene editing vectors. Therefore, this protocol first focuses on preparation of iPSCs for transfection to achieve high nuclear delivery efficiency. When iPSCs are dissociated into single cells using a gentle-cell dissociation reagent and transfected using an optimized program, >50% cells can be induced to take up the large gene editing vectors. Because the AAVS1 locus is located in the intron of an active gene (PPP1R12C), a splicing acceptor (SA)-linked puromycin resistant gene (PAC) was used to select targeted iPSCs while excluding random integration-only and untransfected cells. This strategy greatly increases the chance of obtaining targeted clones, and can be used in other active gene targeting experiments as well. Two weeks after puromycin selection at the dose adjusted for the specific iPSC line, clones are ready to be picked by manual dissection of large, isolated colonies into smaller pieces that are transferred to fresh medium in a smaller well for further expansion and genetic and functional screening. One can follow this protocol to readily obtain multiple GFP reporter iPSC lines that are useful for in vivo and in vitro imaging and cell isolation.  相似文献   

2.
Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus.  相似文献   

3.
The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8+ T cells and gene targeting of a GFP transgene cassette in >40% of CD8+ and CD4+ T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.  相似文献   

4.
Background aimsCell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment.MethodsIn this study, we injected intravenously (i.v.) 1 × 106 MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals.ResultsWe observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group.ConclusionsiNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors.  相似文献   

5.
6.
Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene in mouse, human and rat, as it can be targeted efficiently and is not subject to gene-silencing effects. Recently, the first case of reporter gene targeting pigs in porcine Rosa26 (pRosa26) locus was reported. In the study, full sequence of pRosa26 locus was further characterized, and the pRosa26 promoter (pR26) was cloned and we evidenced that the new porcine endogenous promoter is suitable for driving transgene expression in a high and stable manner by avoiding DNA methylation. Furthermore, elongation factor 1a promoter (EF1a) -driven GFP reporter and Myostatin promoter (MyoP)-driven Follistatin (Fst) were successfully targeted into the pRosa26 locusby traditional homologous recombination (HR) strategy. EF1a showed high activity and hypomethylation at the locus. And, muscle-specific promoter MyoP was activated strictly in muscle of the pRosa26 targeted pigs, indicating Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner. The study provided further demonstration on biomedical and agricultural applications of porcine Rosa26 promoter and locus.  相似文献   

7.
8.
Mesenchymal stromal cells (MSCs) are considered to be suitable vehicles for cellular therapy in various conditions. The expression of reporter and/or effector protein(s) enabled both the identification of MSCs within the organism and the exploitation in targeted tumor therapies. The aim of this study was to evaluate cellular changes induced by retrovirus-mediated transgene expression in MSCs in vitro. Human Adipose Tissue-derived MSCs (AT-MSCs) were transduced to express (i) the enhanced green fluorescent protein (EGFP) reporter transgene, (ii) the fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) enzyme along with the expression of dominant positive selection gene NeoR or (iii) the selection marker NeoR alone (MOCK). CDy::UPRT expression resulted in increased proliferation of CDy::UPRT-MSCs versus naïve AT-MSCs, MOCK-MSCs or EGFP-MSCs. Furthermore, CDy::UPRT-MSCs were significantly more sensitive to 5-fluorouracil (5FU), cisplatin, cyclophosphamide and cytosine arabinoside as determined by increased Caspase 3/7 activation and/or decreased relative proliferation. CDy::UPRT-MSCs in direct cocultures with breast cancer cells MDA-MB-231 increased tumor cell killing induced by low concentrations of 5FU. Our data demonstrated the changes in proliferation and chemoresistance in engineered MSCs expressing transgene with enzymatic function and suggested the possibilities for further augmentation of targeted MSC-mediated antitumor therapy.  相似文献   

9.

Background

Previously, we validated capability of human adipose tissue‐derived mesenchymal stem cells (AT‐MSC) to serve as cellular vehicles for gene‐directed enzyme prodrug molecular chemotherapy. Yeast fusion cytosine deaminase : uracil phosphoribosyltransferase expressing AT‐MSC (CDy‐AT‐MSC) combined with systemic 5‐fluorocytosine (5FC) significantly inhibited growth of human colon cancer xenografts. We aimed to determine the cytotoxic efficiency to other tumour cells both in vitro and in vivo.

Methods

CDy‐AT‐MSC/5FC‐mediated proliferation inhibition against a panel of human tumour cells lines was evaluated in direct and indirect cocultures in vitro. Antitumour effect was tested on immunodeficient mouse model in vivo.

Results

Although culture expansion of CDy‐AT‐MSC sensitized these cells to 5FC mediated suicide effect, expanded CDy‐AT‐MSC/5FC still exhibited strong bystander cytotoxic effect towards human melanoma, glioblastoma, colon, breast and bladder carcinoma in vitro. Most efficient inhibition (91%) was observed in melanoma A375 cell line when directly cocultured with 2% of therapeutic cells CDy‐AT‐MSC/5FC. The therapeutic paradigm of the CDy‐AT‐MSC/5FC system was further evaluated on melanoma A375 xenografts on nude mice in vivo. Complete regression in 89% of tumours was achieved when 20% CDy‐AT‐MSC/5FC were co‐injected along with tumour cells. More importantly, systemic CDy‐AT‐MSC administration resulted in therapeutic cell homing into subcutaneous melanoma and mediated tumour growth inhibition.

Conclusions

CDy‐AT‐MSC capability of targeting subcutaneous melanoma offers a possibility to selectively produce cytotoxic agent in situ. Our data further demonstrate beneficial biological properties of AT‐MSC as a cellular vehicle for enzyme/prodrug therapy approach to molecular chemotherapy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
《Cytotherapy》2022,24(8):827-834
Background aimsChimeric antigen receptor (CAR) T-cell therapy can be associated with significant toxicities. CAR-engineered natural killer (NK) cells provide a safer alternative while maintaining anti-tumor effects. Activated NK (aNK) cells are a clinical-grade cellular product obtained from the NK-92 cell line that have demonstrated both safety and potent cytotoxicity toward a wide range of cancers in phase 1 trials. Genetically engineered variants of aNK cells expressing a high-affinity Fc receptor (haNK) or co-expressing a CAR (t-haNK) are currently in phase 1/2 clinical trials. A key factor in the efficacy of cellular immunotherapies is biodistribution and tumor infiltration, which affect the local effector:target ratio. The chemokines CCL19 and CCL21 can drive recruitment of CCR7 receptor-expressing immune cells to secondary lymphoid organs.MethodsSince NK-92 cells do not spontaneously express CCR7, clinical-grade aNK cells were transfected with a non-viral vector containing the CCR7 receptor, an anti-CD19 CAR and a high-affinity CD16 Fc receptor.ResultsCCR7-engineered CD19 t-haNK showed significant migration in vitro toward K562 cells engineered to secrete CCL19. This observation was confirmed in a NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse model in which subcutaneous tumors of CCL19-expressing K562 cells displayed a higher number of infiltrating CCR7_CD19 t-haNK cells than CCR7-negative CD19 t-haNK cells. In NSG mice inoculated either intravenously or subcutaneously with CCL19-secreting Raji cells, treatment with CCR7_CD19 t-haNK improved survival and tumor control compared with CD19 t-haNK or vehicle.ConclusionsExpression of CCR7 receptor by off-the-shelf t-haNK cells improves their homing toward lymph node chemokines both in vitro and in vivo, resulting in superior tumor control.  相似文献   

11.
摘要 目的:建立稳定表达Cas9蛋白的SW620人结肠癌细胞系的单克隆细胞株,提高基因编辑效率,为利用基于CRISPR/Cas9技术的高通量筛选结肠癌相关致病基因提供细胞工具。方法:用Cas9慢病毒侵染SW620细胞系,用致死剂量的puro筛选5-7天,通过有限稀释法获得单克隆细胞株。提取单克隆细胞基因组进行Sanger测序,筛选出含有Cas9基因序列的单克隆细胞株。利用基于SSA修复荧光素酶的报告系统检测单克隆细胞株中Cas9的编辑活性,并通过细胞增殖实验检测Cas9蛋白的表达是否影响细胞增殖。结果:获得了两个表达Cas9蛋白的SW620单克隆细胞株,并通过Sanger测序验证了Cas9序列;荧光素酶报告系统检测显示单克隆细胞株的Cas9蛋白有较高的编辑活性;细胞增殖实验显示Cas9蛋白的表达对SW620增殖活性影响不大。结论:本研究利用慢病毒感染的方式,构建了稳定表达Cas9蛋白的SW620单克隆细胞株,为后续大规模筛选与人结肠癌相关的基因突变提供了细胞工具。  相似文献   

12.
Targeted transgene integration in plants remains a significant technical challenge for both basic and applied research. Here it is reported that designed zinc finger nucleases (ZFNs) can drive site-directed DNA integration into transgenic and native gene loci. A dimer of designed 4-finger ZFNs enabled intra-chromosomal reconstitution of a disabled gfp reporter gene and site-specific transgene integration into chromosomal reporter loci following co-transformation of tobacco cell cultures with a donor construct comprised of sequences necessary to complement a non-functional pat herbicide resistance gene. In addition, a yeast-based assay was used to identify ZFNs capable of cleaving a native endochitinase gene. Agrobacterium delivery of a Ti plasmid harboring both the ZFNs and a donor DNA construct comprising a pat herbicide resistance gene cassette flanked by short stretches of homology to the endochitinase locus yielded up to 10% targeted, homology-directed transgene integration precisely into the ZFN cleavage site. Given that ZFNs can be designed to recognize a wide range of target sequences, these data point toward a novel approach for targeted gene addition, replacement and trait stacking in plants.  相似文献   

13.
14.
15.
16.
The mouse whey acidic protein (WAP) gene in mouse embryonic stem (ES) cells has been targeted with a loxP-flanked neomycin phosphotransferase-thymidine kinase (neo-TK) cassette inserted into exon 4. Southern blot revealed that 51 of 199 colonies were correctly targeted (1:4). Next, a Cre-encoding plasmid was electroporated into a targeted cell line to cause the deletion of the neo-TK cassette. Modified ES cell colonies were identified by polymerase chain reaction (PCR); 44 out of 50 colonies (88%) had undergone Cre-mediated deletion. Finally, a loxP-tagged cell line was co-electroporated with a Cre-encoding plasmid and a loxP-containing neo plasmid for site-specific insertion into the WAP locus. The frequency of this event was 23% (11 of 48) of that obtained with random integration. This demonstrates the feasibility of using the Cre-loxP system for site-specific integration in ES cells. Moreover, this is the first report of targeting a loxP-containing transgene into a predetermined location in ES cells. Ultimately, a mouse model derived from these modified ES cells will usher in a second generation of animal “bioreactor” models where the inserted transgene is controlled exclusively by the endogenous locus regulatory elements. In addition, oncogenesis can be explored from single copy oncogene/tumor suppressor gene inserts, which are regulated in a temporal and tissue-specific manner. It is hoped that regulation of transgene expression in this fashion will help elucidate the underlying mechanisms of normal development in the mammary gland. Mol. Reprod. Dev. 48:324–331, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
18.
Zhao  Yang  Kim  Jae Y.  Karan  Ratna  Jung  Je H.  Pathak  Bhuvan  Williamson  Bruce  Kannan  Baskaran  Wang  Duoduo  Fan  Chunyang  Yu  Wenjin  Dong  Shujie  Srivastava  Vibha  Altpeter  Fredy 《Plant molecular biology》2019,100(3):247-263
Key message

A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination.

Abstract

Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.

  相似文献   

19.
Immune responses to vector-corrected cells have limited the application of gene therapy for treatment of chronic disorders such as inherited deficiency states. We have found that recombinant adeno-associated virus (AAV) efficiently transduces muscle fibers in vivo without activation of cellular and humoral immunity to neoantigenic transgene products such as β-galactosidase, which differs from the experience with recombinant adenovirus, where vibrant T-cell responses to the transgene product destroy the targeted muscle fibers. T cells activated following intramuscular administration of adenovirus expressing lacZ (AdlacZ) can destroy AAVlacZ-transduced muscle fibers, indicating a prior state of immunologic nonresponsiveness in the context of AAV gene therapy. Adoptive transfer of dendritic cells infected with AdlacZ leads to immune mediated elimination of AAVlacZ-transduced muscle fibers. AAVlacZ-transduced antigen-presenting cells fail to demonstrate β-galactosidase activity and are unable to elicit transgene immunity in adoptive transfer experiments. These studies indicate that vector-mediated transduction of dendritic cells is necessary for cellular immune responses to muscle gene therapy, a step which AAV avoids, providing a useful biological niche for its use in gene therapy.  相似文献   

20.
Monocytes emigrate from bone marrow, can infiltrate into brain, differentiate into microglia and clear amyloid β (Aβ) from the brain of mouse models of Alzheimer’s disease (AD). Here we show that these mechanisms specifically require CC-chemokine receptor 2 (CCR2) expression in bone marrow cells (BMCs). Disease progression was exacerbated in APPSwe/PS1 mice (transgenic mice expressing a chimeric amyloid precursor protein [APPSwe] and human presenilin 1 [PS1]) harboring CCR2-deficient BMCs. Indeed, transplantation of CCR2-deficient BMCs enhanced the mnesic deficit and increased the amount of soluble Aβ and expression of transforming growth factor (TGF)-β1 and TGF-β receptors. By contrast, transplantation of wild-type bone marrow stem cells restored memory capacities and diminished soluble Aβ accumulation in APPSwe/PS1 and APPSwe/PS1/CCR2−/− mice. Finally, gene therapy using a lentivirus-expressing CCR2 transgene in BMCs prevented cognitive decline in this mouse model of AD. Injection of CCR2 lentiviruses restored CCR2 expression and functions in monocytes. The presence of these cells in the brain of non-irradiated APPSwe/PS1/CCR2−/− mice supports the concept that they can be used as gene vehicles for AD. Decreased CCR2 expression in bone marrow–derived microglia may therefore play a major role in the etiology of this neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号