首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quaegebeur A  Lange C  Carmeliet P 《Neuron》2011,71(3):406-424
At first sight, the nervous and vascular systems seem to share little in common. However, neural and vascular cells not only are anatomically closely tied to each other, but they also utilize and respond to similar classes of signals to establish correct connectivity and wiring of their networks. Recent studies further provide evidence that this neurovascular crosstalk is more important for understanding the molecular basis of neurological disease than originally anticipated. Moreover, neurovascular strategies offer novel therapeutic opportunities for neurodegenerative disorders.  相似文献   

2.
Petersen I  Eastman R  Lanzer M 《FEBS letters》2011,585(11):1551-1562
Resistance to antimalarial drugs has often threatened malaria elimination efforts and historically has led to the short-term resurgence of malaria incidences and deaths. With concentrated malaria eradication efforts currently underway, monitoring drug resistance in clinical settings complemented by in vitro drug susceptibility assays and analysis of resistance markers, becomes critical to the implementation of an effective antimalarial drug policy. Understanding of the factors, which lead to the development and spread of drug resistance, is necessary to design optimal prevention and treatment strategies. This review attempts to summarize the unique factors presented by malarial parasites that lead to the emergence and spread of drug resistance, and gives an overview of known resistance mechanisms to currently used antimalarial drugs.  相似文献   

3.
Lithium has emerged as a neuroprotective agent efficacious in preventing apoptosis-dependent cellular death. Lithium neuroprotection is provided through multiple, intersecting mechanisms, although how lithium interacts with these mechanisms is still under investigation. Lithium increases cell survival by inducing brain-derived neurotrophic factor and thereby stimulating activity in anti-apoptotic pathways, including the phosphatidylinositol 3-kinase/Akt and the mitogen-activated protein kinase pathways. In addition, lithium reduces pro-apoptotic function by directly and indirectly inhibiting glycogen synthase kinase-3beta activity and indirectly inhibiting N-methyl-D-aspartate (NMDA)-receptor-mediated calcium influx. Lithium-induced regulation of anti- and pro-apoptotic pathways alters a wide variety of downstream effectors, including beta-catenin, heat shock factor 1, activator protein 1, cAMP-response-element-binding protein, and the Bcl-2 protein family. Lithium neuroprotection has a wide variety of clinical implications. Beyond its present use in bipolar mood disorder, lithium's neuroprotective abilities imply that it could be used to treat or prevent brain damage following traumatic injury, such as stroke, and neurodegenerative diseases such as Huntington's and Alzheimer's diseases.  相似文献   

4.
5.
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.  相似文献   

6.
7.
The neurotransmitter serotonin is an important regulator of energy balance. In the brain, serotonergic fibres from midbrain raphe nuclei project to key feeding centres, where serotonin acts on specific receptors to modulate the activity of various downstream neuropeptide systems and autonomic pathways and thus affects ingestive behaviour and energy expenditure. Serotonin, released by intestinal enterochromaffin cells, also appears to regulate energy homeostasis through peripheral mechanisms. Serotonergic effects on energy balance lead to secondary effects on glucose homeostasis, based on a well-established link between obesity and insulin resistance. However, serotonergic pathways may also directly affect glucose homeostasis through regulation of autonomic efferents and/or action on peripheral tissues. Several serotonergic compounds have been evaluated for clinical use in the treatment of obesity and type 2 diabetes; results of these trials are discussed here. Finally, future directions in the elucidation of serotonergic metabolic regulation are discussed.  相似文献   

8.
Epigenetics and the environment: emerging patterns and implications   总被引:1,自引:0,他引:1  
Epigenetic phenomena in animals and plants are mediated by DNA methylation and stable chromatin modifications. There has been considerable interest in whether environmental factors modulate the establishment and maintenance of epigenetic modifications, and could thereby influence gene expression and phenotype. Chemical pollutants, dietary components, temperature changes and other external stresses can indeed have long-lasting effects on development, metabolism and health, sometimes even in subsequent generations. Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems. These have implications for structuring future research and understanding disease and development.  相似文献   

9.
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.  相似文献   

10.
11.
Chronic idiopathic thrombocytopenic purpura (ITP) is an immune-mediated disorder in which platelets are prematurely destroyed in the reticuloendothelial system by platelet autoantibodies. However, it is becoming clear that the pivotal process of the humoral immune response in the pathogenesis of the disorder is a complex interaction between antigen-presenting cells, T cells and B cells. Furthermore, it is increasingly evident that regulatory T cells play an important role and that T-cell-mediated cytotoxicity contributes to the destruction of platelets in ITP. Different new approaches to immunotherapy in chronic ITP have been explored, including use of anti-CD20, anti-CD154 and anti-CD52 antibodies. So far, these therapies have been antigen-nonspecific and the risk of general immunosuppression is a concern. Thus, improving our understanding of the interaction and relative contribution of humoral and cell-mediated mechanisms is essential for developing antigen-specific immunotherapies for the treatment of this disorder. This review aims to elucidate the current status of knowledge of the cellular and humoral immune components of chronic ITP, together with the implications of this knowledge for therapy.  相似文献   

12.
The accumulation of the amyloid-beta peptide, the main constituent of the "amyloid plaque", is widely considered to be the key pathological event in Alzheimer's disease. Amyloid-beta is produced from the amyloid precursor protein through the action of the proteases beta-secretase and gamma-secretase. Alternative cleavage of amyloid precursor protein by the enzyme alpha-secretase precludes amyloid-beta production. In addition, several proteases are involved in the degradation of amyloid-beta. This review focuses on the proteolytic mechanisms of amyloid-beta metabolism. An increasingly detailed understanding of proteolysis in both amyloid-beta deposition and clearance has identified some of these proteases as potential therapeutic targets for Alzheimer's disease. A more complex knowledge of these proteases takes us one step closer to developing "disease-modifying" therapies, but these advances also emphasize that significant challenges must be overcome before clinically effective drugs to treat Alzheimer's disease become a reality.  相似文献   

13.
The genetic manipulation of mice has led to insights into the molecular mechanisms of autoimmune disease. Recent studies have begun to identify ways in which signalling cascades can be disrupted that preclude the development of autoimmunity. This review outlines a new model for the induction of T-cell-mediated autoimmune diseases. I highlight recent data that illustrate the ways in which the altered survival of T cells and defects in the inhibitory signalling pathways of T cells can contribute to autoimmunity.  相似文献   

14.
15.
16.
Histone deacetylase inhibitors (HDACi) are an emerging class of novel anti-cancer drugs that cause growth arrest, differentiation and apoptosis of tumor cells. In addition, many advances have been made in understanding the immunoregulation of Toll-like receptors, NOD-like receptors and interferons that have recently generated new momentum for the study of HDACi in immunity as a whole, and in the regulation of these innate signaling pathways specifically. HDACi have shown promise as new anti-inflammatory and immunosuppressant agents. They have also demonstrated great potency and relative selectivity in various human/animal models of inflammatory diseases. This review focuses on recent progress and the current state of HDACi knowledge, as well as the molecular mechanisms and therapeutic potential of HDACi for the treatment of inflammatory diseases and cancers.  相似文献   

17.
18.
19.
Adrenomedullin: molecular mechanisms and its role in cardiac disease   总被引:3,自引:0,他引:3  
Yanagawa B  Nagaya N 《Amino acids》2007,32(1):157-164
Summary. Adrenomedullin (AM) is a potent, long-lasting vasoactive peptide originally isolated from human pheochromocytoma. Since its discovery, serum and tissue AM expression have been shown to be increased in experimental models and in patients with cardiac hypertrophy, myocardial infarction and end-stage heart failure with several beneficial effects. Considerable evidence exists for a wide range of autocrine, paracrine and endocrine mechanisms for AM which include vasodilatory, anti-apoptotic, angiogenic, anti-fibrotic, natriuretic, diuretic and positive inotropic. Thus, through regulation of body fluid or direct cardiac mechanisms, AM has additive and beneficial effects in the context of heart disease. Notable molecular mechanisms of AM include cyclic adenosine monophosphate, guanosine-3′,5′-monophosphate, PI3K/Akt and MAPK-ERK-mediated cascades. Given the endogenous and multifunctional nature of AM, we consider this molecule to have great potential in the treatment of cardiovascular diseases. In agreement, early experimental and preliminary clinical studies suggest that AM is a new and promising therapy for cardiovascular diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号