首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background aimsTransplantation of allogeneic hematopoietic stem cells (HSC) within the framework of hematologic oncology or inherited diseases may be associated with complications such as engraftment failure and long-term pancytopenia. HSC engraftment can be improved, for example by co-transplantation with mesenchymal stem cells (MSC). Recently, a new multipotent MSC line from umbilical cord blood, unrestricted somatic stem cells (USSC), has been described. It was demonstrated that USSC significantly support proliferation of HSC in an in vitro feeder layer assay.MethodsA NOD/SCID mouse model was used to assess the effect of USSC on co-transplanted CD34+ cells and look for the fate of transplanted USSC. The migration potential of USSC was studied in a Boyden chamber migration assay and in vivo. Quantitative real-time polymerase chain reaction (qRT-PCR) for CXCR4, CD44, LFA1, CD62L, VLA4, RAC2, VLA5A and RAC1 were performed. NMR1 nu/nu mice were used for a tumorigenicity test.ResultsAfter 4 weeks, homing of human cells (CD45+) to the bone marrow of NOD/SCID mice was significantly increased in mice co-transplanted with CD34+ cells and USSC (median 30.9%, range 7–50%) compared with the CD34+ cell-only control group (median 5.9%, range 3–10%; P = 0.004). Homing of USSC could not be shown in the bone marrow. A cell–cell contact was not required for the graft enhancing effect of USSC. An in vivo tumorigenicity assay showed no tumorigenic potential of USSC.ConclusionsThis pre-clinical study clearly shows that USSC have an enhancing effect on engraftment of human CD34+ cells. USSC are a safe graft adjunct.  相似文献   

3.
Background aimsIt has been demonstrated that transplantation of human cord blood-derived unrestricted somatic stem cells (USSC) in a porcine model of acute myocardial infarction (MI) significantly improved left ventricular (LV) function and prevented scar formation as well as LV dilation. Differentiation, apoptosis and macrophage mobilization at the infarct site could be excluded as the underlying mechanisms. The paracrine effect of the cells is most likely to be observed as the cause for the USSC treatment. The aim of our study was to examine the cardiomyocyte metabolism and the role of high-energy phosphates at the marginal infarct.MethodsUSSC were transplanted into the myocardium of the LV, which was supplied by a ligated circumflex artery. Forty-eight hours later, the hearts were harvested and biopsies were performed from the marginal infarct zone surrounding the site of the cell injection. The concentrations of creatinine phosphate (CP), adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) were determined by chromatography.ResultsThe concentration of ADP, ATP and CP in the marginal zone of the infarction was significantly higher in the USSC group. The mean global left ventricular ejection fraction (LVEF) (SD) was 64% (8%) before MI; post-MI, LVEF decreased to 35% (9%).ConclusionsPreservation of high-energy phosphates in the marginal infarct zone suggests that the preservation of energy reserves of surviving cardiomyocytes is a possible mechanism of action of transplanted stem cells in acutely ischemic myocardium.  相似文献   

4.
The hepatic‐like phenotype resulting from in vitro differentiation of unrestricted somatic stem cells (USSC) derived from human umbilical cord blood (CB) was analyzed with regard to functional and metabolic aspects. USSC can be differentiated into cells of all three germ layers in vitro and in vivo and, although they share many features with mesenchymal stroma cells (MSC), can be distinguished from these by their expression of DLK1 as well as a restricted adipogenic differentiation potential. For the differentiation procedure described herein, a novel three‐stage differentiation protocol resembling embryonic developmental processes of hepatic endoderm was applied. Hepatic pre‐induction was performed by activinA and FGF4 resulting in enhanced SOX17 and FOXA2 expression. Further differentiation was achieved sequentially by retinoic acid, FGF4, HGF, EGF, and OSM resulting in a hepatic endodermal identity, characterized by the expression of AFP and HNF1α. Thereafter, expression of G6PC, ARG1, FBP1, and HNF4α was observed, thus indicating progressive differentiation. Functional studies concerning albumin secretion, urea formation, and cytochrome‐p450‐3A4 (CYP3A4) enzyme activity confirmed the hepatic‐like phenotype. In order to characterize the differentiated cells at a metabolic level, USSC were incubated with [1‐13C]glucose. By tracing the fate of the molecule's label via isotopomer analysis using 13C NMR spectroscopy, formation of both glycogen and some gluconeogenetic activity could be observed providing evidence of a hepatocyte‐like glucose metabolism in differentiated USSC. In conclusion, the results of the present study indicate that USSC represent a stem cell source with a substantial hepatic differentiation capacity which hold the potential for clinical applications. J. Cell. Physiol. 225: 545–554, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Background aimsBone marrow (BM) mesenchymal stromal/stem cells (MSC) are therapeutic tools in regenerative medicine and oncology. MSC isolation is often performed starting from a separation step based on research-grade 1.077 g/mL density gradient media (DGM). However, MSC clinical application should require the introduction of good manufacturing practice (GMP) reagents. We took advantage of two novel GMP DGM with densities of 1.077 and 1.073 g/mL (Ficoll-Paque? PREMIUM and Ficoll-Paque PREMIUM 1.073, respectively) to test whether these reagents could isolate MSC efficiently while simultaneously comparing their performance.MethodsBM samples were processed using either 1.077 or 1.073 g/mL GMP DGM. BM mononucleated cell (MNC) fractions were analyzed for viability, immunophenotype, clonogenic potential, ex vivo expansion and differentiation potential.ResultsNo differences were noticed in cell recovery and viability between the groups. Fluorescence-activated cell-sorting (FACS) analyzes on freshly isolated cells indicated that the 1.073 g/mL GMP DGM more efficiently depleted the CD45+ fraction in comparison with 1.077 GMP DGM. Moreover, in the 1.073 group, fibroblastic colony-forming units (CFU-F) were 1.5 times higher and the final MSC yield 1.8 times increased after four passages. Both reagents isolated MSC with the expected phenotype; however, 1.073-isolated MSC showed a higher expression of CD90, CD146 and GD2. Additionally, MSC from both groups were capable of fully differentiating into bone, adipose cells and cartilage.ConclusionsBoth GMP DGM enriched MSC from BM samples, suggesting that these reagents would be suitable for clinical-grade expansions. In addition, the density of 1.073 g/mL provides a significant advantage over 1.077 g/mL GMP DGM, impacting the quantity of MSC obtained and reducing the ex vivo expansion time for optimized cell-based clinical applications.  相似文献   

6.
《Cytotherapy》2020,22(12):780-791
Background aimsSeveral studies report on Good Manufacturing Process (GMP)-compliant manufacturing protocols for the ex vivo expansion of tumor-infiltrating lymphocytes (TILs) for the treatment of patients with refractory melanoma and other solid malignancies. Further opportunities for improvements in terms of ergonomy and operating time have been identified.MethodsTo enable GMP-compliant TILs production for adoptive cell therapy needs, a simple automated and reproducible protocol for TILs manufacturing with the use of a closed system was developed and implemented at the authors’ institution.ResultsThis protocol enabled significant operating time reduction during TILs expansion while allowing the generation of high-quality TILs products.ConclusionsA simplified and efficient method of TILs expansion will enable the broadening of individualized tumor therapy and will increase patients’ access to state-of-the-art TILs adoptive cell therapy treatment.  相似文献   

7.

Background  

Human umbilical cord blood-derived unrestricted somatic stem cells (USSCs), which are capable of multilineage differentiation, are currently under investigation for a number of therapeutic applications. A major obstacle to their clinical use is the fact that in vitro expansion is still dependent upon fetal calf serum, which could be a source of pathogens. In this study, we investigate the capacity of three different stem cell culture media to support USSCs in serum-free conditions; HEScGRO™, PSM and USSC growth mediumACF. Our findings demonstrate that USSCs do not grow in HEScGRO™ or PSM, but we were able to isolate, proliferate and maintain multipotency of three USSC lines in USSC growth mediumACF.  相似文献   

8.
9.
10.
11.
《Cytotherapy》2014,16(9):1245-1256
Background aimsReactivation of cytomegalovirus (CMV) after hematopoietic stem cell transplantation remains a major cause of morbidity despite improved antiviral drug therapies. Selective restoration of CMV immunity by adoptive transfer of CMV-specific T cells is the only alternative approach that has been shown to be effective and non-toxic. We describe the results of clinical-scale isolations of CMV-specific donor lymphocytes with the use of a major histocompatibility (MHC) class I peptide streptamer-based isolation method that yields minimally manipulated cytotoxic T cells of high purity.MethodsEnrichment of CMV-specific cytotoxic T lymphocytes (CTLs) was performed by labeling 1 × 1010 leukocytes from a non-mobilized mononuclear cell (MNC) apheresis with MHC class I streptamers and magnetic beads. Thereafter, positively labeled CMV-specific CTLs were isolated through the use of CliniMACS (magnetic-activated cell sorting), and MHC streptamers were released through the use of d-biotin. The purity of enriched CMV-specific CTLs was determined on the basis of MHC streptamer staining and fluorescence-activated cell sorting.ResultsA total of 22 processes were performed with the use of five different MHC class I streptamers. The median frequency of CMV-specific CTLs in the starting apheresis product was 0.41% among CD3+ T cells. The isolation process yielded a total of 7.77 × 106 CMV-specific CTLs, with a median purity of 90.2%. Selection reagents were effectively removed from the final cell product; the CMV-specific CTLs displayed excellent viability and cytotoxicity and were stable for at least 72 h at 4°C after MNC collection.ConclusionsClinical-scale isolation of “minimally manipulated” CMV-specific donor CTLs through the use of MHC class I streptamers is feasible and yields functional CTLs at clinically relevant dosages.  相似文献   

12.
Background aimsExpansion of hemopoietic stem cells (HSCs) in vitro is a potential strategy for improving transplant outcomes, but expansion methods tend to promote differentiation and loss of stem cell potential. Aryl hydrocarbon receptor antagonists (AhRAs) have recently been shown to protect HSC stemness during expansion; however, little is known of the T-cell regenerative capacity of AhRA-expanded HSCs. In this study, we confirm the protective effect of two commercially available AhRA compounds on HSCs from both cord blood (CB) and adult samples and assess the T-lymphocyte potential of the expanded cells.MethodsAdult mobilized peripheral blood and CB samples were purified to CD34+ cells, which were expanded in vitro with cytokines and AhRAs. After 14 d, CD34+ cells were re-isolated and then grown on in OP9Delta co-culture under conditions that allow T-lymphocyte differentiation. Cells were monitored weekly for T-lineage markers by flow cytometry.ResultsBoth AhRA compounds promoted maintenance of CD34 expression during 2 weeks of proliferation with growth factors, although adult cells proliferated markedly less than CB cells. AhRA-expanded CD34+ cells from CB differentiated to T cells on OP9Delta co-culture with the same rate and time course as untreated cells. Adult cells, by contrast, had reduced differentiation to T cells, with donor-dependent variable responses.ConclusionsThis study shows that whereas AhRA treatment is effective in CB samples, expansion of adult HSCs is less successful and reflects their inherent poor potential in T-cell generation.  相似文献   

13.
Background aimsUmbilical cord blood (UCB) is a rich source of stem cells, the characterization and isolation of which requires specific stem cell markers and reliable and reproducible protocols.MethodsWe assessed CD133 isolation in 39 UCB samples, using a commercial immunomagnetic cell-sorting protocol, and, because of its non-reproducibility, we applied optimized protocols in an effort to improve it. These included extra-labeling of the selected CD133+ subpopulation and indirect labeling using anti-phycoerythrin (PE) microbeads, goat anti-mouse IgG microbeads or a combination of both. The CD34 isolation was used as a control.ResultsThe mononuclear cell fraction expressed 0.53 ± 0.06% CD133. The corresponding value for CD34 was 1.64 ± 0.15%. Following the manufacturer's instructions, the CD34 isolation resulted in a population expressing 93 ± 1.25% CD34 while, after the corresponding process, CD133+ expression ranged from 10% to 85% (median 60%). The optimized isolation protocols did not result in improved CD133+ yield. The variation in the purity of the CD133 population cannot be attributed to the different clones of CD133 used, because they do not cross-block, while other factors such as glycosylation, which could possibly interfere, do not apply in normal hematopoietic stem cells (HSC).ConclusionsCD34 isolation by the immunomagnetic method results in highly pure CD34+ population, while the efficient and reproducible yield of a pure CD133+ population is not feasible. Therefore quantification of the positive cells should follow each isolation procedure in order to confirm the number of CD133+ cells.  相似文献   

14.
《Cytotherapy》2014,16(10):1409-1418
Background aimsGraft-versus-host disease remains a major cause of death after hematopoietic stem cell transplantation. Cyclosporine (CsA) and mycophenolate mofetil (MMF) have been successfully used alone or in combination as prophylaxis for graft-versus-host disease. Although the effects of these drugs on T cells have been studied, little is known about the effects of both drugs on natural killer (NK) cells. We examined if the sensitivity of umbilical cord blood (CB) NK cells to MMF and/or CsA differs from their adult counterparts.MethodsAn approach that was based on flow cytometry and real-time polymerase chain reaction was used to assess the effects of MMF, CsA and the combination of both drugs on the viability, activation, proliferation and cytotoxicity of peripheral blood (PB) and CB NK cells after culture with interleukin-2.ResultsMMF alone or together with CsA induced cell death of CB NK cells but not of PB NK cells. MMF and CsA had differential effects on NK cell activation but significantly reduced proliferation of CB NK cells. MMF reduced perforin expression by PB NK cells, whereas CsA alone or together with MMF drastically decreased degranulation of CB and PB NK cells. However, neither affected cytokine secretion by PB and CB NK cells.ConclusionsThis study showed that CB NK cells were more sensitive to MMF and CsA than were PB NK cells. MMF and CsA had significant effects on NK cells that could jeopardize the beneficial effects of NK cells after hematopoietic stem cell transplantation.  相似文献   

15.
16.
An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.  相似文献   

17.
Background aimsAmniotic fluid (AF) is a well-known source of stem cells. However, there have been no reports regarding equine AF stem cells. We have isolated equine AF-derived multipotent stem cells (MSC) (eAF-MSC) and show that these cells exhibit self-renewal ability and multilineage differentiation.MethodsAF was obtained from thoroughbred mares and mononuclear cells (MNC) were isolated by Ficoll–Paque density gradient. We measured the cumulative population doubling level (CPDL) and characterized the immunophenotype by flow cytometry. To investigate differentiation ability, a trilineage differentiation assay was conducted.ResultseAF-MSC could be isolated and the proliferation level was high. eAF-MSC presented typical MSC phenotypic markers, as determined by flow cytometry. Moreover, eAF-MSC showed a trilineage differentiation capability.ConclusionsEquine AF is a good source of MSC. Furthermore, eAF-MSC may be useful as a cell therapy application for horses.  相似文献   

18.
19.
To evaluate the potential of three stem cells for cell therapy and tissue engineering applications, the biological behavior and osteogenic capacity of the newly introduced cord-blood-derived, unrestricted somatic stem cells (USSC) were compared with those of mesenchymal stem cells isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). There was no significant difference between the rates of proliferation of the three stem cells. During osteogenic differentiation, alkaline phosphatase (ALP) activity peaked on day 7 in USSC compared to BM-MSC which showed the maximum value of ALP activity on day 14. However, BM-MSC had the highest ALP activity and mineralization during osteogenic induction. In addition, AT-MSC showed the lowest capacity for mineralization during differentiation and had the lowest ALP activity on days 7 and 14. Although AT-MSC expressed higher levels of collagen type I, osteonectin and BMP-2 in undifferentiated state, but these genes were expressed higher in BM-MSC during differentiation. BM-MSC also expressed higher levels of ALP, osteocalcin and Runx2 during induction. Taking together, BM-MSC showed the highest capacity for osteogenic differentiation and hold promising potential for bone tissue engineering and cell therapy applications.  相似文献   

20.
Umbilical cord blood (CB) banks usually freeze and store CB for clinical transplantation using conventional controlled-rate freezer or the automated BioArchive system. The aim of this study is to compare the quality of CB cryopreserved with conventional and automated methods and to make clear the cause of the quality difference between the two methods. The experiment used 80 CB units: 40 were conventionally cryopreserved and the remainder were cryopreserved with a BioArchive. After thawing, the following measures of CB quality were compared: recovery rates of cell count, cell viability of total nucleated cells (TNCs), mononuclear cells (MNCs), and CD34+ cells, as well as colony-forming unit-granulocyte/macrophage (CFU-GM) content. Additionally, processing and storage records were reviewed to quantify the number of exposures of CB units at room temperature (transient warming event, TWE), which was analyzed in relation to CB quality. MNC and CD34+ cell viability were as follows: MNC, 78.2% ± 6.8% (conventional), 81.7% ± 7.2% (automated); CD34+ cell, 90.6% ± 6.9% (conventional), 94.7% ± 3.5% (automated). The absolute CFU-GM content per CB unit was 7.1 × 105 ± 5.9 × 105 with conventional cryopreservation and 12.3 × 105 ± 12.0 × 105 with automated cryopreservation. CBs cryopreserved with BioArchive showed significantly higher MNC and CD34+ cell viability, and CFU-GM content than those conventionally cryopreserved. The CB quality comparison depending on the amount of TWEs showed no significant quality difference between groups that were more exposed to TWEs and groups that were less exposed. CBs cryopreserved with BioArchive were of higher quality than conventionally cryopreserved CBs, and the cause of quality difference might be due to the difference of freezing conditions rather than the TWE effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号