首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect pollination improves the yield and quality of many crops, yet there is increasing evidence of insufficient insect pollinators limiting crop production. Effective Integrated Crop Pollination (ICP) involves adaptable, targeted and cost-effective management of crop pollination and encourages the use of both wild and managed pollinators where appropriate. In this study we investigate how the addition of honeybee hives affects the community of insects visiting oilseed rape, and if hive number and location affect pollinator foraging and oilseed rape pollination in order to provide evidence for effective ICP. We found that introducing hives increased overall flower visitor numbers and altered the pollinator community, which became dominated by honeybees. Furthermore a greater number of hives did not increase bee numbers significantly but did result in honeybees foraging further into fields. The timing of surveys and proximity to the field edge influenced different pollinators in different ways and represents an example of spatial and temporal complementarity. For example dipteran flower visitor numbers declined away from the field edge whereas honeybees peaked at intermediate distances into the field. Furthermore, no significant effects of survey round on wild bees overall was observed but honeybee numbers were relatively lower during peak flowering and dipteran abundance was greater in later survey rounds. Thus combining diverse wild pollinators and managed species for crop pollination buffers spatial and temporal variation in flower visitation. However we found no effect of insect pollination on seed set or yield of oilseed rape in our trial, highlighting the critical need to understand crop demand for insect pollination before investments are made in managing pollination services.  相似文献   

2.
Crop pollination by animals is an essential ecosystem service. Among animal-pollinated crops, distylous plants strongly depend on animal pollination. In distylous pollination systems, pollinator species are usually limited, although flowers of some distylous plants are visited by diverse animals. We studied the pollination biology of common buckwheat ( Fagopyrum esculentum ), a distylous crop mainly pollinated by honeybees and visited by many insect species, to evaluate the effects of non-honeybee species on pollination services. We focused on insects smaller than honeybees to determine their contribution to pollination. We applied pollination treatments with bags of coarse mesh to exclude flower visits by honeybees and larger insects and compared the seed set of bagged plants with that of untreated plants for pin and thrum flower morphs. We found a great reduction of seed set only in bagged pin flowers. We also confirmed that small insects, including ants, bees, wasps and flies, carried pin-morph pollen. These small insects transfer pollen from the short anthers of pin flowers to the short styles of thrum flowers, leading to sufficient seed set in thrum flowers. Consequently, small, non-honeybee insects have the potential to maintain at least half of the yield of this honeybee-dependent distylous crop.  相似文献   

3.
Pollination, seed set and seed predation on a landscape scale   总被引:14,自引:0,他引:14  
We analysed the combined effects of pollination and seed predation on seed set of Centaurea jacea in 15 landscapes differing in structural complexity. In the centre of each landscape, a patch of Centaurea plants was established for standardized measurements of flower visitation, seed predation and seed set. Both the number of flower-visiting bees and the proportion of flower heads damaged by seed predators increased with landscape complexity, which was measured as the proportion of semi-natural habitats. The mean number of seeds per flower head did not increase with the proportion of semi-natural habitats, presumably because of the counterbalancing effects of pollination and seed predation. For a subset of undamaged flower heads, the number of seeds per flower head was positively correlated with the number of flower visits. Further reasons for the unexpected failure to detect a correlation between landscape complexity and seed set appeared to be changes in flower-visitor behaviour and the contrasting responses of honeybees and wild bees to habitat context. Landscape analyses at eight spatial scales (radius of landscape sectors, 250-3000 m) showed that different groups perceived the landscape at different spatial scales. Changes in pollinator numbers could be explained only at small scales (up to 1000 m), while the seed predators also responded to large scales (up to 2500 m).  相似文献   

4.
Bees are in decline potentially leading to reduced pollination and hence production of insect-pollinated crops in many countries. It is however still unclear whether the consequences of pollinator shortages differ among countries with different environmental and societal conditions. Here, we calculated economic gains attributed to insect (particularly bee) pollination (EVIP) as well as their contribution to the total value of crop production (vulnerability), and analyzed their temporal trends and inter-annual variability from 1991 to 2009 for each country of the European Union (EU). To understand which factors drive country-specific differences in pollinator dependency and stability of insect-dependent crop yields, we further asked whether EVIP, vulnerability and stability of yields were influenced by a country's climate, the number of wild bee species and/or managed honeybee hives per country, and (agricultural) gross domestic product (GDP).Across Europe, crop pollination by insects accounted for 14.6 [±3.3] billion EUR annually (EVIP), which equaled 12 (±0.8)% of the total economic value of annual crop production. Gains strongly varied among countries. Both EVIP and vulnerability increased (and the inter-annual variation of vulnerability decreased) significantly from the colder northern to the warmer Mediterranean EU countries, in parallel with increases in the number of wild bee species. Across years, economic importance of pollination increased in all but three EU countries. Apples were the most important insect-pollinated crop in the EU, accounting for 16% of the EU's total EVIP. Our results show that whereas dependency on insect pollination increased from the colder north to the warmer south, variation in economic gain from insect pollination decreased, indicating that Mediterranean countries had more stable yields of pollinator-dependent crops across years and thus more reliable gains from pollination services.  相似文献   

5.
Animal-mediated pollination is essential for the production and quality of fruits and seeds of many crops consumed by humans. However, crop pollination services might be compromised when wild pollinators are scarce. Managed pollinators are commonly used in crops to supplement such services with the assumption that they will enhance crop yield. However, information on the spatiotemporal pollinator-dependence of crops is still limited. We assessed the contribution of commercial bumble bee colonies compared to the available pollinator community on strawberry (‘Fortuna’ variety) flower visitation and strawberry quality across a landscape gradient of agricultural intensification (i.e. polytunnel berry crop cover). We used colonies of bumble bees in winter and in spring, i.e. when few and most wild pollinators are in their flight period, respectively. The placement of colonies increased visits of bumble bees to strawberry flowers, especially in winter. The use of bumble bee colonies did not affect flower visitation by other insects, mainly honey bees, hoverflies and other Diptera. Flower visitation by both honey bees and wild insects did not vary between seasons and was unrelated to the landscape gradient of berry crop cover. Strawberries were of the highest quality (i.e. weight) when insect-mediated pollination was allowed, and their quality was positively related to wild flower visitors in winter but not in spring. However, increased visits to strawberry flowers by managed bumble bees and honey bees had no effect on strawberry weight. Our results suggest that the pollination services producing high quality strawberry fruits are provided by the flower visitor community present in the study region without the need to use managed bumble bees.  相似文献   

6.
The yield of many agricultural crops depends on pollination services provided by wild and managed bees, many of which are experiencing declines due to factors such as reductions in floral resources. Thus, improving pollinator habitat on farmlands using management strategies like planting wildflower strips is vital for wild bee conservation and sustainable crop pollination. Yet, few studies have examined whether and at what spatial scales wildflower strips enhance crop pollination and yields, and most research has been conducted in large-scale commercial agriculture. Therefore, we investigated the effects of wildflower strips on crop pollination on small, diversified farms (i.e., those growing a variety of crop species) where wild bee diversity and abundance is predicted to be comparatively high. Over three years, on four diversified farms in Montana USA, we tested the hypothesis that distance (20, 60, and 180 m) of crops from native perennial wildflower strips planted alongside crop fields affected wild bee visitation, pollination, and yields of squash and sunflower crop plants. We found that distance to wildflower strips did not affect bee visitation or pollination in crops. Squash yield was pollen-limited in the growing season prior to wildflower strip establishment, and in one of the two years after wildflower strip establishment, but proximity to wildflower strips did not influence the magnitude of pollen limitation. Sunflower seed production was not pollen-limited in any year. Our findings demonstrate that even on diverse farms with wildflower strips and a demonstrated high diversity of bees, some crops do not necessarily receive maximum pollination, regardless of distance from the wildflower strips. However, the value of wildflower strips for supporting wild bee diversity, and other ecological or economic benefits, needs consideration for a full understanding of this pollinator habitat management strategy.  相似文献   

7.
Understanding the relative contributions of wild and managed pollinators, and the functional contributions made by a diverse pollinator community, is essential to the maintenance of yields in the 75% of our crops that benefit from insect pollination. We describe a field study and pollinator exclusion experiments conducted on two soft-fruit crops in a system with both wild and managed pollinators. We test whether fruit quality and quantity is limited by pollination, and whether different pollinating insects respond differently to varying weather conditions. Both strawberries and raspberries produced fewer marketable fruits when insects were excluded, demonstrating dependence on insect pollinators. Raspberries had a short flowering season which coincided with peak abundance of bees, and attracted many bees per flower. In contrast, strawberries had a much longer flowering season and appeared to be much less attractive to pollinators, so that ensuring adequate pollination is likely to be more challenging. The proportion of high-quality strawberries was positively related to pollinator abundance, suggesting that yield was limited by inadequate pollination on some farms. The relative abundance of different pollinator taxa visiting strawberries changed markedly through the season, demonstrating seasonal complementarity. Insect visitors responded differently to changing weather conditions suggesting that diversity can reduce the risk of pollination service shortfalls. For example, flies visited the crop flowers in poor weather and at the end of the flowering season when other pollinators were scarce, and so may provide a unique functional contribution. Understanding how differences between pollinator groups can enhance pollination services to crops strengthens the case for multiple species management. We provide evidence for the link between increased diversity and function in real crop systems, highlighting the risks of replacing all pollinators with managed alternatives.  相似文献   

8.
An increasing number of farmland initiatives aim to aid biodiversity conservation through alternative farming practices such as nature-inclusive farming. However, these approaches frequently lead to trade-offs between biodiversity conservation and crop yield. For example, buckwheat (Fagopyrum esculentum) is a melliferous crop that flowers for a long period in the summer when nectar in agricultural areas is generally scarce, and buckwheat cultivation could therefore contribute to wild pollinator conservation. However, honeybees (Apis mellifera) are placed to ensure sufficient crop pollination, which potentially increases resource competition with wild pollinators in and around the crop. Here, we have studied this trade-off by surveying pollinators in and around 16 small-scale (∼1 ha) flowering buckwheat fields and we determined the contribution of pollinator density to crop yield in a nature-inclusive farming project. We found that the buckwheat pollinator community was diverse, albeit dominated by honeybees. We found no clear indications of resource competition between honeybees and wild pollinators within the buckwheat fields. Honeybee density in the surroundings was generally low, and increased minimally during honeybee-hive placement. While densities of honeybees decreased non-linearly over the day in buckwheat fields, they did not (temporarily) move into the surroundings of the field, suggesting limited competition for resources with wild pollinators. Crop yield was largely dependent on crop pollinator density, notably of honeybees, and to a lesser extent crop biomass (as a proxy for agricultural management). Our results show that buckwheat cultivation fits well within nature-inclusive farming if some simple precautionary measures are being taken, such as limiting the honeybee-hive densities and placing hives only during the main flowering period. The introduction of buckwheat cultivation into crop rotation could then contribute to fill an important nectar gap in the summer, which potentially boosts wild pollinator populations in the long term.  相似文献   

9.
  • 1 Declining numbers in honeybees and various wild bee species pose a threat to global pollination services. The identification and quantification of the pollination service provided by different taxa within the pollinator guild is a prerequisite for the successful establishment of nature conservation and crop management regimes.
  • 2 Wild bees and hoverflies are considered to be valuable pollinators in agricultural and natural systems. Although some information on pollination efficiency of individual pollinator species is available, comparative studies of both taxa at different densities are rare. In the present study, the efficiency of the solitary mason bee Osmia rufa and two hoverfly species (Eristalis tenax and Episyrphus balteatus) as pollinators of oilseed rape Brassica napus was examined in a standardized caged plant breeding regime. Honeybee Apis mellifera colonies were used as a reference pollinator taxon.
  • 3 Yield parameters responded differently to pollinator density and identity. Fruit set and number of seeds per pod increased with increasing pollinator density, although these were stronger in the mason bee than the hoverfly treatment. Weight per 1000 seeds did not respond to any pollinator treatment, indicating that seed quality was not affected. Oilseed rape yield in the highest tested densities of both pollinator taxa resulted in yield values close to the efficiency of small honeybee colonies.
  • 4 Hoverflies required approximately five‐fold densities of the red mason bees to reach a similar fruit set and yield. Thus, mason bees are more efficient in plant breeding and managed pollination systems. Both natural pollinator taxa, however, are of potential value in open and closed crop production systems.
  相似文献   

10.
Habitat remnants act as a source of pollinators potentially relevant for crop pollination and yield. This work analyzes how habitat loss influences pollinators, effective pollination and yield of soybean crops. The study area comprises ten sites adjacent to forest patches surrounded by a soybean matrix in central Argentina (eight sites in the season 2014–2015 and two sites in the season 2015–2016). Pollination was estimated by pollen deposition and frequency of flower visitors. Pollen deposition on stigmas and seed set were measured comparing open plants and plants with pollinator exclusion. These response variables were compared considering increasing distance to the forest edge and an increasing gradient of forest patch size. Bees were the most frequent visitors of soybean flowers, especially honeybees, but also at least three native bee species were recorded. Open plants showed higher rates of stigmatic pollen deposition than plants with pollinator exclusion, but seed set was similar. Total insect visitation rates, especially of native insects, decreased with distance to the forest edge and so did pollen deposition. Pollen deposition and seed set increased with increasing forest patch size for plants located near and far from the forest edge, respectively. Overall, our results suggest that the contribution of native pollinators from local forest patches is important for effective pollination across the landscape. Small patches of forest (approximately 1 ha.) guarantee pollinators to ensure plant yields similar to the yields of plants growing close to large patches, but only at short distances; while larger forest patches provide better pollination services for the crop at larger distances from the forest edge. However, we encourage further studies because results suggest that other factors may also influence soybean pollination and production.  相似文献   

11.
Declines in insect pollinators in Europe have been linked to changes in land use. Pollinator nutrition is dependent on floral resources (i.e., nectar and pollen), which are linked to landscape composition. Here, we present a stratified analysis of the nutritional composition of beebread in managed honeybee hives with a view to examining potential sources of variation in its nutritional composition. Specifically, we tested the hypothesis that beebread composition correlates with local land use and therefore available floral resources. The results demonstrated that the starch, lipid, and moisture contents of beebread are all highly conserved across hives, whereas levels of protein and nonreducing sugar increased as the year progressed, reducing sugars, however, decreased during the first half of the year and then increased toward the end. Local land use around hives was quantified using data from the Countryside Survey 2007 Land Cover Map. Bee‐bread protein content was negatively correlated with increasing levels of arable and horticultural farmland surrounding hives and positively correlated with the cover of natural grasslands and broadleaf woodlands. Reducing sugar content was also positively correlated with the amount of broad‐leaved woodland in a 3 Km² radius from the hives. Previous studies on a range of invertebrates, including honeybees, indicate that dietary protein intake may have a major impact on correlates of fitness, including longevity and immune function. The finding that beebread protein content correlates with land use suggests that landscape composition may impact on insect pollinator well‐being and provides a link between landscape and the nutritional ecology of socially foraging insects in a way not previously considered.  相似文献   

12.
Pollinators are beneficial for many wild and crop plants. As a mass-flowering crop, oilseed rape has received much focus in terms of its pollination requirements but despite a threefold increase in area of cultivation of this crop in Ireland over the past 5 years, little is known about its pollination here. We surveyed the flower visiting insects found in commercial winter oilseed rape fields and evaluated the importance of different pollinator groups, investigated the contribution of insect pollination to oilseed rape seed production, and estimated the economic value of insect pollination to the crop at a national level. Our data showed that winter oilseed rape is visited by a wide variety of insect species, including the honeybee, bumblebees, solitary bees, and hoverflies. The honeybee, Eristalis hoverflies and bumblebees (especially Bombus sensu stricto and B. lapidarius) were the best pollinators of winter oilseed rape based on the number of pollen grains they carry, visitation rates per flower and their relative abundance per field. Exclusion of pollinators resulted in a 27 % decrease in the number of seeds produced, and a 30 % decrease in seed weight per pod in winter crops, with comparable values from a spring oilseed rape field also. The economic value of insect pollination to winter oilseed rape was estimated as €2.6 million per annum, while the contribution to spring oilseed rape was €1.3 million, resulting in an overall value of €3.9 million per annum. We can suggest the appropriate conservation and management of both honeybees and wild pollinators in agricultural areas to ensure continued provision of pollination services to oilseed rape, as a decrease in insect numbers has the potential to negatively influence crop yields.  相似文献   

13.
Wildflower strips (WFS) are amongst the most commonly applied measures to promote pollinators and natural enemies of crop pests in agroecosystems. Their potential to enhance these functionally important insect groups may vary substantially with time since establishment of WFS. However, knowledge on their temporal dynamics remains scarce, hampering recommendations for optimized design and management. We therefore examined temporal dynamics of taxonomic and functional groups of bees and hoverflies in perennial WFS ranging from one to ≥6 years since sowing with a standardized species-rich seed mixture of flowering plants in 18 agricultural landscapes in Switzerland. The abundance of wild bees, honeybees and hoverflies declined after the second year by 89%, 62% and 72%, respectively. Declines in bee abundance and hoverfly species richness were linear and those of aphidophagous hoverflies exponential, while wild bee species richness peaked in the third year. Declines over time generally paralleled decreases in flower abundance (-83%) and flowering species richness (-61%) and an increase in grass cover (+70%) in WFS. Flowering plant species richness showed strong positive relationships with dominant crop-visiting wild bees and aphidophagous hoverflies. Furthermore, dominant crop-visiting wild bees, but not aphidophagous hoverflies, were positively related to the proportion of (semi-)open semi-natural habitat in the surrounding landscape (500 m radius), but negatively with forest. We conclude that the effectiveness of perennial WFS to promote pollinator diversity, crop-pollinating bees and aphidophagous hoverflies through foraging resources decreases after the first two to three years, probably due to a decline of diverse and abundant floral resources. Although older perennial WFS may still provide valuable nesting and overwintering opportunities for pollinators and natural enemies, our findings indicate that regular re-sowing of perennial WFS may be necessary to maintain adequate floral resource provisioning for effective pollinator conservation and promotion of crop pollination and natural pest control services in agricultural landscapes.  相似文献   

14.
Pollinating insects are not only important in wild plant pollination, but also in the production of a large number of crops. Oilseed rape production is increasing globally due to demands for biofuels which may have impacts on pollinating insects which visit the crop and on the pollination services delivered to co-flowering wild plants. In this study, we tested (1) the degree of pollinator sharing between oilseed rape and native wild plants in field margins and hedgerows and (2) the effects of oilseed rape on the quality of pollination service delivered to these wild plants. We found large overlap between flower visitors of wild plants and oilseed rape, but the composition of species overlap differed with respect to each wild plant species. Nearly all individual visitors caught on both the crop and foraging on wild species carried crop pollen, but more than half the insects also carried pollen from wild plants. However, very little oilseed rape pollen was deposited on wild plant stigmas. This shows that (1) oilseed rape overlaps in pollinator niche with most co-flowering wild plants, and (2) crop pollen deposition on wild plant stigmas is low which may indicate that it is unlikely to cause reductions in seed set of wild plants, although this was not measured here. Furthermore, wild plants in field margins and hedgerows are important sources of alternative forage for pollinating insects even when a crop is mass flowering, and we suggest maintenance and augmentation of field margins and hedgerows to provide alternative forage for pollinator conservation to continue provision of pollination services to both crops and wild plants.  相似文献   

15.
Landscape supplementation, which enhances densities of organisms by combination of different landscape elements, is likely common in heterogeneous landscapes, but its prevalence and effects on species richness have been little explored. Using grassland-dwelling spiders in an agricultural landscape, we postulated that richness and abundances of major constituent species are both highest in intermediate mixtures of forests and paddy fields, and that this effect derives from multi-scale landscape heterogeneity. We collected spiders in 35 grasslands in an agricultural landscape in Japan and determined how species richness and abundances of major species related to local and landscape factors across different spatial scales. We used a generalized linear model to fit data, created all possible combinations of variables at 15 spatial scales, and then explored the best models using Akaike's information criterion. Species richness showed a hump-shaped pattern in relation to surrounding forest cover, and the spatial scale determining this relationship was a 300–500-m radius around the study sites. Local variables were of minor importance for species richness. Abundances of major species also exhibited a hump-shaped pattern when plotted against forest cover. Thus, a combination of paddy fields and forests is important for enhancement of grassland spider species richness and abundance, suggesting habitat supplementation. The effective spatial scales determining abundances varied, ranging from 200 to >1000 m, probably representing different dispersal abilities. Landscape compositional heterogeneity at multiple spatial scales may be thus crucial for the maintenance of species diversity.  相似文献   

16.
Mass‐flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi‐natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape‐scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator‐dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator‐supporting practices in agricultural landscapes.  相似文献   

17.
Spiders are an abundant and diverse group of generalist predators in arable fields. Knowledge on what landscape and site factors affect this group can be valuable for efforts to reduce biodiversity loss in agricultural landscapes and can have implications for natural pest control. We investigated the impact of landscape and site factors on epigeic spiders in 29 winter oilseed rape fields (Brassica napus, OSR) embedded in differently structured landscapes in an agricultural region east of Vienna (Austria). Landscape factors included proportions of non‐crop areas, woody areas and fallows, lengths of road‐side strips and hedges, and landscape diversity at different spatial scales (r=250–2000 m). Site factors included OSR stand density, soil index, soil cultivation intensity, nitrogen fertilisation level, OSR vegetation cover in late autumn, and insecticide applications. Data were analysed using regression, ordination, and variation partitioning. Different characteristics of spider assemblages responded to different landscape factors at different spatial scales. Observed species richness showed the strongest positive reponse to proportions of woody areas at rather small scale (radius 500 m), but the relation remained significant up to the 1250 m radius. Standardised species richness was positively related to non‐crop area at the smallest scale (radius 250 m). Activity density was positively related to length of road‐side strips with maximum effects at large scale (radius 1750 m) and non‐crop area (radius 750 m). Site characteristics (stand density, insecticide applications, and late autumn ground cover) and landscape factors (woody areas and fallows at radius 500 m) were similarly important for explaining species composition. We interpret the scale‐dependency of relations as the result of differences in dispersal power of the studied spider species. These results demonstrate the important, scale dependent influence of natural and semi‐natural habitats on spider assemblages in arable fields.  相似文献   

18.
Pollinators are traditionally thought to perceive non-flowering crop fields as hostile landscape matrix. In this study, we show that landscapes composed of higher proportions of organic crop fields support more bee species at greater abundances in fallow strips. An increase in organic cropping in the surrounding landscape from 5% to 20% enhanced bee species richness in fallow strips by 50%, density of solitary bees by 60% and bumble bee density by 150%. Bee species richness and bumble bee density responded strongest to organic cropping in landscape sectors with 500 m radius, solitary bee density in landscape sectors with 250 m radius. The most likely source of these results is that crop and noncrop habitats are strongly connected via bee foraging at the landscape scale. It seems likely that bees depending on nesting sites in fallow strips benefited from the more abundant flower resources provided by broadleaved weeds in organic crop fields. We conclude that the incorporation of organic crop fields into conventionally managed agricultural landscapes can provide food resources needed to sustain greater pollinator species richness in noncrop habitats.  相似文献   

19.
Managing the complex relationship between pollinators and their habitat requirements is of particular concern to growers of pollinator-dependent crop species, such as courgette (Cucurbita pepo). Naturally occurring wild flowers (i.e. agricultural weeds) offer a free, sustainable, and often underappreciated resource for pollinators, however, they may compete with crop flowers for visits. To understand the extent to which floral resources mediate pollinator visitation to courgette flowers and courgette fields, plant community and pollinator visitation data were collected at two spatial scales: field scale (in margins, and in the cropped area) and farm scale (500 m and 2000 m radii) for nine courgette fields across the UK. Apis mellifera (honeybees) and Bombus spp. (bumblebees) were the only pollinators observed to visit courgette flowers. Bumblebees were significantly more abundant on courgette flowers in fields with a greater species richness of wild flowers in the crop, whilst honeybees were significantly more abundant on courgette flowers in areas with less semi-natural habitat. For both honeybees and bumblebees, their abundance in field margins did not significantly reduce their abundance on courgette flowers, suggesting that wild flowers were not competing with courgette flowers for pollinator visitation. Although solitary bees were not observed to visit courgette flowers, their abundance and species richness in courgette fields were significantly greater with more semi-natural habitat and a greater species richness of wild flowers. Therefore, allowing uncultivated areas around the crop to be colonised by species-rich wild flowers is an effective way of boosting the abundance of bumblebees, which are important visitors to courgette flowers, as well as the abundance and species richness of solitary bees, thereby benefitting pollinator conservation.  相似文献   

20.
Insect pollination benefits over three quarters of the world''s major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号