首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》2002,23(6):349-359
In order to increase our present knowledge of the potential impacts of deforestation on the soil ecosystem, we investigated the responses of enchytraeid and tardigrade populations to tree harvesting. The study was conducted in an area of ca. 10 ha located at an altitude of approximately 450 m in the surroundings of the University campus (Vigo, Pontevedra, Spain). Pine forest (Pinus pinaster Aiton), with an average density of 400 trees/ha ranging between 10 and 20 years of age, and some young oaks (Quercus robur L.) were covering the area. At the end of the summer 1995, approximately 50% of the area was harvested. Soil and animal samples were taken from May 1996 to April 1997 at monthly intervals in both forested and deforested areas. Removal of the trees resulted in a significant effect on enchytraeid population numbers and their response was species-dependent in terms of changes in both population numbers and vertical distribution. Higher mortality rates of enchytraeids were recorded in the absence of trees. August seemed to have been critical for survival of all enchytraeid species as no individuals were found in that month and only a few recovered in the following month. Only Cognettia sphagnetorum showed vertical migration in order to avoid adverse conditions. Tardigrades were more abundant in the deforested areas; their ability to enter in a resistant stage could have enabled them to overcome adverse environmental conditions. It is concluded that harvesting of the trees has changed the soil environment and that differences in moisture and temperature conditions are not sufficient to explain the observed differences. The forest soils contained more organic matter than those in the deforested area and therefore differences in the amount and/or quality of the organic matter could be one of the possible explanations for the observed changes in enchytraeid abundance when the forest is removed.  相似文献   

2.
A laboratory microcosm experiment was established to study whether the role of Cognettia sphagnetorum (Enchytraeidae) in affecting Scots pine (Pinus sylvestris) seedling growth is influenced by wood ash-amendment, i.e., neutralisation of the raw humus soil. Coniferous forest soil, inoculated with soil microbes and nematodes, was either treated with wood ash or left as ash-free control. Wood ash (corresponding to an amount of 5000 kg ha–1) was either spread on the soil surface or mixed into the soil. Enchytraeid and pine seedling biomass, abundance of nematodes, and water leachable NH4 +-N and NO3 -N were measured 26 and 51 weeks after initiation of the experiment and root length and N concentration of needles were measured 51 weeks after initiation of the experiment. Wood ash when mixed into the soil, reduced the biomass of C. sphagnetorum. Nematodes were unaffected by the treatments. In the ash-free soils C. sphagnetorum had little influence on pine growth, but it did decrease root length and root to shoot ratio. In the absence of enchytraeids wood ash decreased pine biomass production and root length. However, the presence of enchytraeids in the ash-treated soil compensated the ash-induced negative effects on the pine performance. Enchytraeids increased and wood ash decreased water leachable NH4 +-N in the presence but not in the absence of enchytraeids, while water leachable NO3 -N was not affected by the treatments. It was concluded that C. sphagnetorum can be important in ensuring nutrient cycling and plant growth in situations when an ecosystem encounters disturbances.  相似文献   

3.
Seasonal variation of dissolved organic C (DOC) and its effects on microbial activity and N dynamics were studied during two consecutive years in soils with different organic C concentrations (hilltop and hillslope) in a tropical deciduous forest of Mexico. We found that DOC concentrations were higher at the hilltop than at the hillslope soils, and in both soils generally decreased from the dry to the rainy season during the two study years. Microbial biomass and potential C mineralization rates, as well as dissolved organic N (DON) and NH4+ concentrations and net N immobilization were higher in soils with higher DOC than in soils with lower DOC. In contrast, net N immobilization and NH4+ concentration were depleted in the soil with lowest DOC, whereas NO3 concentrations and net nitrification increased. Negative correlations between net nitrification and DOC concentration suggested that NH4+ was transformed to NO3 by nitrifiers when the C availability was depleted. Taken together, our results suggest that available C appears to control soil microbial activity and N dynamics, and that microbial N immobilization is facilitated by active heterotrophic microorganisms stimulated by high C availability. Soil autotrophic nitrification is magnified by decreases in C availability for heterotrophic microbial activity. This study provides an experimental data set that supports the conceptual model to show and highlight that microbial dynamics and N transformations could be functionally coupled with DOC availability in the tropical deciduous forest soils. Responsible Editor: Chris Neill  相似文献   

4.
为探明不同演替阶段土壤碳吸存潜力,选取演替时间为15a(演替初期)、47a(演替中期)、110a(演替后期)3个中亚热带常绿阔叶林,分析了各演替阶段的土壤有机碳(SOC)含量以及土壤微生物量碳(MBC)、可溶性碳(DOC)和微生物熵(SMQ)的季节变化。结果表明:演替中、后期不同土层的土壤SOC、MBC、DOC含量和SMQ均显著高于演替初期(P<0.05);与演替中期相比,演替后期土壤MBC、DOC含量有所降低,SOC含量和SMQ无显著差异。土壤SOC、MBC和DOC含量随土层加深而显著性降低(演替初、中期DOC除外),并随演替进行逐渐向腐殖质层富集。不同演替阶段MBC、DOC和SMQ均有显著季节变化,最低值出现在秋季,最高值随演替进程由冬季逐步转向夏季。相关分析表明,不同演替阶段土壤活性有机碳含量与土壤有机碳含量极显著相关(P<0.01),且土壤活性有机碳(MBC、DOC)和SMQ对土壤碳库变化更为敏感。  相似文献   

5.
H. Setälä 《Oecologia》2000,125(1):109-118
Mycorrhizal plants are commonly believed to direct much more of their photosynthates into the soil than non-mycorrhizal plants. As the growth of most organisms of the detrital food web is limited by energy, the flow of C through mycorrhizal plants into the below-ground milieu is widely assumed to nourish a variety of decomposer organisms in soils. In the current experiment, I explored whether some representatives of soil mesofauna, either fungivores or microbi-detritivores, derive benefit from the presence of ectomycorrhizal (EM) fungi growing on the roots of Scots pine (Pinus sylvestris). I also investigated whether the role of soil mesofauna in affecting pine growth depends on the presence of EM fungi in the pine rhizosphere. The study was established in microcosms with a mixture of raw humus and sand. The soil was defaunated, reinoculated with 10 species of soil bacteria and 11 species of saprophytic soil fungi, and pine seedlings, either infected or non-infected with four taxa of EM fungi, were planted in the microcosms. Five treatments with different food web configurations were established: (1) saprophytic microbes alone, (2) as (1) but with the omnivorous enchytraeid species Cognettia sphagnetorum present, (3) as (1) but with Collembola (Hypogastrura assimilis), (4) as (1) but with four species of oribatid mites (Acari) involved, and (5) as 1) but with C. sphagnetorum, H. assimilis and the Acari. The microcosms were incubated in a climate chamber with varying temperature and illumination regimes for two growing periods for the pine. After 60 weeks, pine biomass production was significantly greater in the mycorrhizal systems, the total biomass being 1.43 times higher in the presence than absence of EM fungi. Similarly, almost ten times more fungal biomass was detected on pine roots growing in the mycorrhizal than in the non-mycorrhizal systems. The presence of EM fungi was also associated with significantly lowered pH and percent organic matter of the soil. Despite the clearly larger biomass of both the pines and the fungi on the pine roots, neither the numbers nor biomasses of the mesofauna differed significantly between the EM and non-EM systems. The presence of Collembola and C. sphagnetorum had a positive influence on pine growth, particularly in the absence of EM fungi, whereas oribatid mites had no effects on pine growth. The complexity of the mesofaunal community was not related to the biomass production of the pines in a straightforward manner; for example, the complex systems with each faunal group present did not produce more pine biomass than the simple systems where C. sphagnetorum existed alone. The results of this experiment suggest that the short-term role of EM fungi in fuelling the detrital food web is less significant than generally considered, but that their role as active decomposers and/or stimulators of the activity of saprophytic microbes can be more important than is often believed. Received: 22 December 1999 / Accepted: 14 April 2000  相似文献   

6.
Although Miscanthus sinensis grasslands (Misc‐GL) and Cryptomeria japonica forest plantations (Cryp‐FP) are proposed bioenergy feedstock systems, their relative capacity to sequester C may be an important factor in determining their potential for sustainable bioenergy production. Therefore, our objective was to quantify changes in soil C sequestration 47 years after a Misc‐GL was converted to a Cryp‐FP. The study was conducted on adjacent Misc‐GL and Cryp‐FP located on Mt. Aso, Kumamoto, Japan. After Cryp‐FP establishment, only the Misc‐GL continued to be managed by annual burning every March. Mass C and N, δ13C, and δ15N at 0–30 cm depth were measured in 5 cm increments. Carbon and N concentrations, C:N ratio, δ13C, and δ15N were measured in litter and/or ash, and rhizomes or roots. Although C input in Misc‐GL by M. sinensis was approximately 36% of that in Cryp‐FP by C. japonica, mean annual soil C sequestration in Misc‐GL (503 kg C ha?1 yr?1) was higher than that in Cryp‐FP (284 kg C ha?1 yr?1). This was likely the result of larger C input from aboveground litter to soil, C‐quality (C:N ratio and lignin concentration in aboveground litter) and possibly more recalcitrant C (charcoal) inputs by annual burning. The difference in soil δ15N between sites indicated that organic C with N had greater cycling between heterotrophic microbes and soil and produces more recalcitrant humus in Misc‐GL than in Cryp‐FP. Our data indicate that in terms of soil C sequestration, maintenance of Misc‐GL may be more advantageous than conversion to Cryp‐FP in Aso, Japan.  相似文献   

7.
Fluxes of dissolved organic carbon (DOC) and nitrogen (DON) may play an important role for losses of C and N from the soils of forest ecosystems, especially under conditions of high precipitation. We studied DOC and DON fluxes and concentrations in relation to precipitation intensity in a subtropical montane Chamaecyparis obtusa var. formosana forest in Taiwan. Our objective was, to quantify DOC and DON fluxes and to understand the role of high precipitation for DOC and DON export in this ecosystem. From 2005 to 2008 we sampled bulk precipitation, throughfall, forest floor percolates and seepage (60 cm) and analyzed DOC, DON and mineral N concentrations. Average DOC fluxes in the soil were extremely high (962 and 478 kg C ha?1 year?1 in forest floor percolates and seepage, respectively) while DON fluxes were similar to other (sub)tropical ecosystems (16 and 8 kg N ha?1 year?1, respectively). Total N fluxes in the soil were dominated by DON. Dissolved organic C and N concentrations in forest floor percolates were independent of the water flux. No dilution effect was visible. Instead, the pool size of potentially soluble DOC and DON was variable as indicated by different DOC and DON concentrations in forest floor percolates at similar precipitation amounts. Therefore, we hypothesized, that these pools are not likely to be depleted in the long term. The relationship between water fluxes in bulk precipitation and DOC and DON fluxes in forest floor percolates was positive (DOC r = 0.908, DON r = 0.842, respectively, Spearman rank correlation). We concluded, that precipitation is an important driver for DOC and DON losses from this subtropical montane forest and that these DOC losses play an important role in the soil C cycle of this ecosystem. Moreover, we found that the linear relationship between bulk precipitation and DOC and DON fluxes in forest floor percolates of temperate ecosystems does not hold when incorporating additional data on these fluxes from (subtropical) ecosystems.  相似文献   

8.
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.  相似文献   

9.
Apart from the forest floor, the canopy of forested ecosystems functions as the second most important source for dissolved and particulate fractions of organic and inorganic C and N compounds. However, under mass outbreak situations of insect herbivores this flux path of organic matter is considerably intensified clearly exceeding C and N fluxes from the forest floor. In this paper we report on herbivore-altered C and N fluxes from the canopy to the forest floor and effects on forest floor nutrient fluxes during severe defoliating herbivory of the winter moth (Operophtera brumata) and the mottled umber moth (Eranis defoliaria) in an oak forest in Germany. Over the course of 6.5 months we followed the C and N fluxes with bulk deposition, throughfall solution, insect frass deposits (green-fall together with insect faeces) and with forest floor solution in an 117-yr-old oak (Quercus petraea) forest. Compared to the control, herbivore defoliation significantly enhanced throughfall inputs of total and dissolved organic carbon and nitrogen by a factor of 3 and 2.5 (for TOC and DOC), and by 1.4 and 1.3 times (for TNb and DNb), respectively. Frass plus green-fall C and N fluxes peaked in May with 592 kg C?ha?1 and 33.5 kg N?ha?1 representing 79.6% (for C) and 78.3% (for N) of the total C and N input over 2.5 months. The quantitative and qualitative C and N input via faeces and litter deposition significantly differ between the insect affected and non-affected site. However, the C and N fluxes with throughfall did not significantly correlate with forest floor leachates. In this context, forest floor fluxes of TOC, DOC and NO3-N were significantly lower at the infested site compared to the control, whereas fluxes of NH4-N together with DON were significantly higher. The study demonstrates the importance of linking the population and associated frass dynamics of herbivorous insects with the cycling of nutrients and organic matter in forest ecosystems, highlighting the remarkable alterations in the timing, amounts and nature of organic matter dynamics on the ecosystem level. Consequently, the ecology of phytophagous insects allows partly to explain temporal-spatial alterations in nutrient cycling and thus ecosystem functioning.  相似文献   

10.
Ecological developments during Holocene age and high atmospheric depositions since industrialization have changed the N dynamics of temperate forest ecosystems. A number of different parameters are used to indicate whether the forests are N‐saturated or not, most common among them is the occurrence of nitrates in the seepage water below the rooting zone. The use of different definitions to describe N saturation implies that the N status of ecosystems is not always appropriately assessed. Data on N dynamics from 53 different German forests were used to classify various development states of forest ecosystems according to the forest ecosystem theory proposed by Ulrich for which N balances of input – (output plus plant N increment) were used. Those systems where N output equals N input minus plant N increment are described as (quasi‐) Steady State Type. Those forests where N output does not equal N input minus plant N increment as in a ‘transient state.’ Forests of the transient state may lose nitrogen from the soil (Degradation Type) or gain nitrogen [e.g., from atmospheric depositions (Accumulation Type)]. Forest ecosystems may occur in four different N states: (a) (quasi‐) Steady State Type with mull type humus, (b) Degradation Type with mull type humus, (c) Accumulation Type with moder type humus, and (d) (quasi‐) Steady State Type with moder type humus. Forests with the (quasi‐) steady state with mull type humus in the forest floor (n= 8) have high‐soil pH values, high N retention by plant increment, high N contents in the mineral soils, and have not undergone large changes in the N status. Forests of the Degradation Type lose nitrogen from the mineral soil (currently degradation is occurring on one site). Most forests that have moder or mor type humus and low‐soil pH values, and low N contents in the mineral soil have gone through the transient state of organic matter loss in the mineral soils. They accumulate organic matter in the forest floor (accumulation phase, currently 21 sites are accumulating 6–21 kg N ha?1 yr?1) or have reached a new (quasi‐) steady state with moder/mor type humus (n= 15). N retention in the accumulation phase has significantly increased in soil with N deposition (r2= 0.38), soil acidity (considering thickness of the forest floor as indices of soil acidity, r2= 0.43) and acid deposition (sulfate deposition, r2= 0.39). Retention of N (4–20 kg N ha?1 yr?1) by trees decreased and of soils increased with a decrease in the availability of base cations indicating the important role of trees for N retention in less acid soils and those of soils in more acid soils. Ecosystem theory could be successfully applied on the current data to understand the dynamics of N in temperate forest ecosystems.  相似文献   

11.
The transport and transformation of dissolved organic matter (DOM) and dissolved inorganic nitrogen (DIN) through the soil profile impact down-gradient ecosystems and are increasingly recognized as important factors affecting the balance between accumulation and mineralization of subsoil organic matter. Using zero tension and tension lysimeters at three soil depths (20, 40, 60 cm) in paired forest and maize/soybean land uses, we compared dissolved organic C (DOC), dissolved organic N (DON) and DIN concentrations as well as DOM properties including hydrophilic-C (HPI-C), UV absorption (SUVA254), humification index and C/N ratio. Soil moisture data collected at lysimeter locations suggest zero tension lysimeters sampled relatively rapid hydrologic flowpaths that included downward saturated flow through the soil matrix and/or rapid macropore flow that is not in equilibrium with bulk soil solution whereas tension lysimeters sampled relatively immobile soil matrix solution during unsaturated conditions. The effect of land use on DOC and DON concentrations was largely limited to the most shallow (20 cm) sampling depth where DOC concentrations were greater in the forest (only zero tension lysimeters) and DON concentrations were greater in the cropland (both lysimeter types). In contrast to DOC and DON concentrations, the effect of land use on DOM properties persisted to the deepest sampling depth (60 cm), suggesting that DOM in the cropland was more decomposed regardless of lysimeter type. DOC concentrations and DOM properties differed between lysimeter types only in the forest at 20 cm where soil solutions collected with zero tension lysimeters had greater DOC concentrations, greater SUVA254, greater humification index and lower HPI-C. Our data highlight the importance of considering DOM quality in addition to DOC quantity, and indicate long-term cultivation reduced the delivery of relatively less decomposed DOM to all soil depths.  相似文献   

12.
The effects of wood ash on the growth of Norway spruce seedlings and grasses, nitrogen and phosphorus leaching, and soil fauna were investigated at two levels of carbon availability in a greenhouse experiment simulating harvested boreal forest. While sucrose-C amendment reduced grass biomass regardless of wood ash by 88%, the shoot and root biomass of spruce seedlings increased by 38% and 370%, respectively. Despite the large variation in above-ground biomass, C addition did not alter the concentration of water extractable ammonium nitrogen in humus, but it counteracted the ash-induced increase in soil phosphate concentration. C addition reduced the proportion of bacterial-feeding nematodes in the nematode community. Wood ash reduced enchytraeid size, but their biomass was not affected. Carbon treatment was crucial for enchytraeids probably because amended pots were moister than controls. Small compensatory grass growth following harvest implied that soil fauna made little nitrogen available to plants in one growing season. The results support the hypothesis that C availability may be an important determinant of nutrient retention, and has the potential to control plant competition in intensively harvested forests.  相似文献   

13.
Population dynamics of enchytraeids are described for 2 montane forested watersheds in southwestern North Carolina (Coweeta) and an agricultural site under conventional (CT) and no-tillage (NT) management in the northeastern Georgia piedmont (Horseshoe Bend, HSB). Given that much of the taxonomy, ecology and community structure of enchytraeids is poorly known, our objective was to identify key indicators of enchytraeid community structure which could be used, in this case, to better understand their role in soil structure formation. Although population densities of enchytraeids were higher in the forested (Coweeta) than in the arable soils (HSB), the average ash free dry weight per enchytraeid at HSB was nearly double that found at Coweeta. Based on these measurements and an estimate of their gut transit time, we calculated that the enchytraeids at HSB transported 2180 g of soil per m2 per year compared to 443 and 393 g m-2 yr-1 for watershed 18 and 27, respectively at Coweeta. We therefore hypothesize that enchytraeids have a larger influence on soil structure in agricultural fields than in forested areas, in spite of lower population densities. The ash free dry weight and ash wt. per enchytraeid may qualify as key indicator parameters of enchytraeid community structure which helps to understand their functional role in ecosystems, though more studies are called for.  相似文献   

14.
In arctic and boreal ecosystems, ground bryophytes play an important role in regulating carbon (C) exchange between vast belowground C stores and the atmosphere. Climate is changing particularly fast in these high-latitude regions, but it is unclear how altered precipitation regimes will affect C dynamics in the bryosphere (i.e. the ground moss layer including senesced moss, litter and associated biota) and the closely associated upper humus layer, and how these effects will vary across contrasting environmental conditions. Here, we set up a greenhouse experiment in which mesocosms were assembled containing samples of the bryosphere, dominated by the feather moss Hylocomium splendens, and the upper humus layer, that were collected from across a boreal forest chronosequence in northern Sweden which varies strongly in nutrient availability, productivity and soil biota. We tested the effect of variation in precipitation volume and frequency on CO2 exchange and dissolved organic carbon (DOC) export, and on moss growth. As expected, reduced precipitation volume and frequency lowered net CO2 efflux, DOC export and moss growth. However, by regulating moisture, the lower bryosphere and humus layers often mediated how precipitation volume and frequency interacted to drive C dynamics. For example, less frequent precipitation reduced moss growth only when precipitation volume was low. When volume was high, high moisture content of the humus layer helped avoid moss desiccation. Variation in precipitation regime affected C cycling consistently in samples collected across the chronosequence, despite large environmental variation along the sequence. This suggests that the bryosphere exerts a strong buffering effect on environmental variation at the forest floor, which leads to similar responses of C cycling to external perturbations across highly contrasting ecosystems. As such, our study indicates that projected increases in droughts and ground evapotranspiration in high-latitude regions resulting from climate change will consistently reduce C losses from moss-dominated ecosystems.  相似文献   

15.
The use of wood ash in forestry has been questioned because the cadmium (Cd) concentration of ash, which varies between 1 and 20 mg kg(-1) ash, exceeds the level allowed for fertilizers (3 mg kg(-1)) used in agriculture. To investigate the combined and separated effects of Cd and ash on the forest humus microflora, pumice or wood ash, spiked with a water-soluble (CdCl(2)) or -insoluble (CdO) form of Cd at three levels (0, 400 and 1000 mg kg(-1)), were applied at a fertilization level of 5000 kg ha(-1) in a laboratory microcosm study. The trial consisted of 60 microcosms (five replications per treatment), which were incubated in darkness at +20 degrees C and a constant relative air humidity of 60%. After two months the humus in the microcosms was sampled. Analyses of CO(2) evolution to measure the overall microbial activity and of phospholipid fatty acid (PLFA) pattern to measure microbial community structure were performed. The substrate-use patterns of Biolog EcoPlates were analyzed as a measure of bacterial functionality. Finally the bacterial (3)H-thymidine incorporation in the presence of different concentrations of Cd and the number of colony forming units (cfu) of bacteria on nutrient agar in the presence of 0, 5 and 20 mg Cd l(-1) agar were applied to measure Cd tolerance. The use of pumice (pH of humus under the pumice 4.0) did not induce any changes in the above variables compared to two untreated microcosms (humus pH 3.9). Pumice was therefore used to distribute the Cd evenly over the humus surface in order to estimate the possible effect of Cd without ash (pH of humus under the ash 7.0). The application of ash increased the microbial activity, changed the PLFA and substrate-use patterns and increased cfu compared to the humus under pumice. The form and level of Cd in the ash had no further effect on this result. In the humus under pumice the level, but not the form of Cd decreased the microbial activity and changed the PLFA pattern compared to the unspiked pumice. None of the treatments induced bacterial tolerance to Cd. Ash thus protected the humus microflora from the harmful effects of Cd.  相似文献   

16.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

17.
Acid N depositions in the Bohemian Forest during the second half of the last century caused enormous soil acidification which led to the leaching of essential nutrients including nitrates. We investigated the effect of dissolved organic matter (DOM) and pH on the abundance of 16S RDNA, nirK and nirS gene copies in four spruce forest sites. Soil samples for molecular based quantification (qPCR) were taken from the organic litter and humus layers. The amounts of dissolved organic carbon (DOC) and dissolved nitrogen (DN) were much lower in highly acidified soils. We found a strong correlation between nirK denitrifiers and the amount of available P (r = 0.83, p < 0.001), which suggested a higher nutrient sensitivity of this group of denitrifying bacteria. Additionally, we found that correlations between the amount of nirK denitrifiers and DOC and pH are exponentional showing two important threshold values, being 4.8 mol kg?1 and 5, respectively. The amount of nirK denitrifiers rapidly decreased below these values. The amount of nirK and nirS denitrifiers was higher in the organic litter horizon than the organic humus horizon at all sampling sites.  相似文献   

18.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

19.
Despite growing attention concerning therole of dissolved organic matter (DOM) inelement cycling of forest ecosystems, thecontrols of concentrations and fluxes of bothdissolved organic carbon (DOC) and nitrogen(DON) under field conditions in forest soilsremain only poorly understood. The goal ofthis project is to measure the concentrations and fluxes of DON, NH4 +, NO3 and DOC in bulkprecipitation, throughfall, forest floorleachates and soil solutions of a deciduousstand in the Steigerwald region (northernBavaria, Germany). The DOC and DONconcentrations and fluxes were highest inleachates originating from the Oa layer of theforest floor (73 mg C L–1, 2.3 mg NL–1 and about 200–350 kg C, 8–10 kg Nha–1 yr–1). They were observed to behighly variable over time and decreased in themineral topsoil (17 mg C L–1, 0.6 mg NL–1 and about 50–90 kg C, 2.0 to 2.4 kg Nha–1 yr–1). The annual variability ofDOC and DON concentrations and subsequentialDOC/DON ratios was substantial in allsolutions. The DOC and DON concentrations inthroughfall were positively correlated withtemperature. The DOC and DON concentrationsdid not show seasonality in the forest floorand mineral soil. Concentrations were notrelated to litterfall dynamics but didcorrespond in part to the input of DOC and DONfrom throughfall. The throughfall contributionto the overall element fluxes was higher forDON than for DOC. Concentrations and fluxes ofDON were significantly correlated to DOC inthroughfall and the Oi layer. However, thecorrelation was weak in Oa leachates. Inaddition, seasonal and annual variation ofDOC/DON ratios indicated different mechanismsand release rates from the forest floor forboth components. The concentrations of DOC andDON in forest floor leachates were in mostcases dependent neither on the pH value orionic strength of the solution, nor on thewater flux or temperature changes. As aconsequence, the DOC and DON fluxes from theforest floor into the mineral soil werelargely dependent on the water flux if annualand biweekly time scales are considered.  相似文献   

20.
No-till reduces global warming potential in a subtropical Ferralsol   总被引:1,自引:0,他引:1  

Aims

We investigated the link between tree community composition and soil microbial community biomass and structure in central-eastern Spain.

Methods

The effects of the forest stand composition on the soil organic matter dynamics and on the structure and activity of the soil microbial community have been determined using phospholipid fatty acid profiles and soil enzymatic activities.

Results

The soil and litter N and C contents were higher in Pinus nigra Arn. ssp. salzmannii and Quercus ilex mixed forest stands (SBHO) and in long-term unmanaged Pinus nigra Arn. ssp. salzmannii forest stands (SBPC) than in pure Pinus nigra Arn. ssp. salzmannii forest stands (SBPA) and Pinus nigra Arn. ssp. salzmannii and Juniperus thurifera mixed forest stands (SBSJ). The bacterial biomass was significantly higher in SBSJ and SBPA than in SBPC and SBHO. The results show an uncoupling of the soil microbial biomass and its activity. pH is related to microbial biomass and its community structure under a Mediterranean humid climate.

Conclusions

The tree species seem to affect the biomass of the soil microbial community and its structure. The pH, but not the C/N ratio, is a factor influencing the microbial dynamics, biomass, and community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号