首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetraploid induction by inhibiting mitosis I with heat shock (32, 35, and 38°C), cold shock (1, 4, and 7°C), and nocodazole (0.02 to 1.6 mg/L) was investigated in the hard clam Mercenaria mercenaria. All treatments were applied to fertilized eggs about 5 min before the first cell division at 22 to 23°C, and lasted for 10, 15, and 20 min. Three replicates were produced for each treatment with different parents. The ploidy of resultant larvae and juveniles was determined with flow cytometry. Heat shock of 35 and 38°C was effective in inhibiting mitosis I, producing 54% to 89% tetraploid larvae. Heat shock of 32°C accelerated embryonic development without inhibiting mitosis or producing tetraploids. In all heat-shock groups, the survival to D-stage larvae was lower than in controls, suggesting that heat-shock treatments and tetraploidy were detrimental to larval development. At the juvenile stage, survivors from heat-shock groups contained no tetraploids. Cold shocks suspended the first cell division during the treatment, but produced no tetraploids in the 4°C and 7°C treatment groups. Cold shock of 1°C produced 31% tetraploid larvae in one replicate, with none surviving to juvenile stage. Nocodazole inhibited mitosis I at concentrations of 0.04 mg/L or higher, but did not produce tetraploids. This study indicates that heat shock is most effective in inducing tetraploids through mitosis I inhibition, although none of the induced tetraploids survived to juvenile stage.  相似文献   

2.
Nam YK  Choi GC  Kim DS 《Theriogenology》2004,61(5):933-945
Blocking the first mitotic cleavage of the zygote is a key tool for chromosome-set manipulations in fish. We developed an improved method for inducing tetraploidy by blocking the mitosis with a combination of heat shock at 40.5 degrees C for 1, 2, or 3 min followed by cold shock at 1.5 degrees C for 30, 45, or 60 min. When applied during the first cleavage metaphase of mud loach (Misgurnus mizolepis) zygotes, the optimal combination was heat for 2 min followed by cold for 45 min. At 1 month, the frequency of 4N survivors and the yield from total eggs fertilized was 55.7 and 14.4%, respectively, compared to heat shock alone with 20.0% efficiency and 3.6% yield. The effectiveness of the procedure was confirmed by diploid mitotic gynogenesis using transgenic markers. The overall yield of homozygous diploids, 34.0%, was better than that for single heat shock, 17.3%. The tetraploids and homozygous diploids had higher early mortality than normal diploid controls. However, at 1 month, the viability of the tetraploids was the same as normal diploids. For gynogenetic diploids, the survival was similar to normal diploids after 3 months. The high efficiency of this new protocol extends the opportunity to study polyploidy in basic and applied research.  相似文献   

3.
Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.  相似文献   

4.
The objective of this research was to induce mitotic chromosome doubling in Anemone sylvestris L. The mitosis inhibitor oryzalin was directly added to the induction medium at 1, 2, 5, 10 and 15 μM for 8, 10 or 12 weeks of cultivation. Three tetraploid plants (2n?=?4x?=?32), 0.8% (polyploidization efficiency), were obtained from diploid plants (2n?=?2x?=?16) in three treatments (1 μM for 10 weeks, 5 μM for 8 weeks and 8 μM for 10 weeks). Ploidy level was confirmed by flow cytometry. Morphological characteristics (e.g. flower diameter, total plant height, leaf area) and chlorophyll content differences between diploid and tetraploid A. sylvestris were observed together with polyphenol content and antioxidant activity. The inter primer binding sites markers were used for evaluation of polymorphism. New genotypes with different morphological and biological characteristics were obtained through somatic polyploidization. The tetraploid plants were stronger, more vigorous and had an early flowering, which is essential for its use as an ornamental plant. The iPBS analysis showed unique amplicons that can be used for the purposes of molecular identification of tetraploid plants of A. sylvestris in the future. The results demonstrate the first report of in vitro induction of tetraploids of A. sylvestris.  相似文献   

5.
A pond-reared adult female Pacific white shrimp (Penaeus vannamei Boone, Crustacea: Decapoda) from an experimental shrimp culture facility in Hawaii was found to possess a lymphatic neoplasm. Present in this animal were bilateral hypertrophied hematopoietic nodules present ventral and lateral to the ventral nerve cord, and smaller multiple ectopic foci of similar appearing lymphoid cells in the gills, the subcutis, and other tissues. The lesions contained numerous anaplastic and hypertrophied lymphoid cells, many of which displayed bizarre mitotic figures, including polypolar metaphase figures. Numerous multinuclear giant cells present in the lesion were presumed to have originated from cells with polypolar mitotic figures. The characteristics of the cells composing these lesions, the expansive and invasive nature of the lesions, and the presence of ectopic foci of neoplastic cells support classification of this lesion as a hematopoietic sarcoma. Focal lesions of the type that are diagnostic of infections by the penaeid shrimp virus IHHN were present in the neoplastic hematopoietic tissue and other tissues of this shrimp, suggesting the possible role of viral infection in the development of neoplastic lesions in this animal.  相似文献   

6.

Key message

Non-preferential chromosome pairing was identified in tetraploid Actinidia chinensis and a higher mean multivalent frequency in pollen mother cells was found in colchine-induced tetraploids of A. chinensis compared with naturally occurring tetraploids.

Abstract

Diploid and tetraploid Actinidia chinensis are used for the development of kiwifruit cultivars. Diploid germplasm can be exploited in a tetraploid breeding programme via unreduced (2n) gametes and chemical-induced chromosome doubling of diploid cultivars and selections. Meiotic chromosome behaviour in diploid A. chinensis ‘Hort16A’ and colchicine-induced tetraploids from ‘Hort16A’ was analysed and compared with that in a diploid male and tetraploid males of A. chinensis raised from seeds sourced from the wild in China. Both naturally occurring and induced tetraploids formed multivalents, but colchicine-induced tetraploids showed a higher mean multivalent frequency in the pollen mother cells. Lagging chromosomes at anaphase I and II were observed at low frequencies in the colchicine-induced tetraploids. To investigate whether preferential or non-preferential chromosome pairing occurs in tetraploid A. chinensis, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of crosses between A. chinensis (4x) and A. arguta (4x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the tetraploid A. chinensis parent.  相似文献   

7.
The tumor suppressor protein p53 plays a major role in preserving genomic stability. p53 suppresses a pathway leading from normal diploidy to neoplastic aneuploidy (via an intermediate metastable stage of tetraploidy) at two levels: first by preventing the generation/survival of tetraploid cells, and second by repressing their aberrant multipolar division. Here, we report the characterization of p53-/- tetraploid cells, which - at difference with both their p53-/- diploid and their p53+/+ tetraploid counterparts - manifest a marked hyperphosporylation of the mitogen-activated protein kinase MAPK14 (best known as p38α) that is particularly strong during mitosis. In p53-/- tetraploid cells, phosphorylated p38α accumulated at centrosomes during the metaphase and at midbodies during the telophase. Selective knockdown or pharmacological inhibition of p38α had a dramatic effect on p53-/- (but not p53+/+) tetraploids, causing the activation of the spindle assembly checkpoint, an arrest during the metaphase, a major increase in abnormal bipolar and monopolar mitoses, as well as an increment in the generation of multinuclear cells. We conclude that the mitotic progression of p53-/- (but not p53+/+) tetraploids heavily relies on p38α, revealing a novel function for this protein in the context of aneuploidizing cell divisions.  相似文献   

8.
Artificial mitotic gynogenesis, a chromosome set manipulation, is applied to provide the homozygous progeny with only maternal inheritance. Here, gynogenetic development was induced in the sterlet Acipenser ruthenus L. (Acipenseridae) by activation of the eggs originating from albino females with the UV-irradiated spermatozoa from wild-coloured males, followed by the heat shock applied to suppress the first mitotic division in the haploid zygotes. All experimentally obtained gynogenetic offspring possessed recessive albino coloration. Moreover, the genetic verification, based on three microsatellite DNA markers, confirmed the only maternal inheritance in the albino progeny. Cytogenetic screening enabled identification of the aneuploids, haploids, diploids, triploids, tetraploids and mosaic individuals among the gynogenetic larvae that hatched from the eggs subjected to the heat shock. Furthermore, 40% of the larvae from the haploid variants of the research that were not exposed to the temperature shock showed the diploid chromosome number. A variation of the ploidy level observed in the gynogenetic sterlets may be the consequence of the spontaneous polyploidisation that occurred in the haploid zygotes. Moreover, observation during embryogenesis showed varied stages of eggs development and the asynchronous cell cleavages that may have resulted in the chromosomal disturbances observed in the gynogenetic sterlets here.  相似文献   

9.
Populations of apomictic seedlings of clones ofCitrus species,Citrus hybrids, andPoncirus in the sub-family Aurantioideae were examined for spontaneous tetraploids as a source of materials for use in breeding experiments. Diagnostic features found useful in identifying nucellar tetraploids were leaf shape, petiole blade shape, leaf blade thickness, leaf color, comparative size differences in leaf venation, oil glands, and stomata, stem thickness, and relative size and developmental pattern of the root system. In older or bearing-age plants, nucellar tetraploids may be identified by differences in growth habit, vigor, size, time of growth initiation and bloom, and flower and fruit characteristics. Data are given for tetraploid frequency in glasshouse-grown, first-year nucellar seedlings of 42 populations of 32 clones of different genetic and seed origin and for tetraploid frequency in commercialnursery nucellar seedlings of the Carrizo rootstock clone in two consecutive years. Comparative data are given for quantitative development of roots, stems, and leaves of tetraploids and similar diploid nucellar seedlings. The data suggest that the ability to produce tetraploid apomictic seedlings is a variable genetic trait present in all or nearly all clones able to reproduce by adventitious embryony. Aspects of tetraploid nucellar seedlings that might warrant their testing as tree-size-controlling rootstocks in commercial citrus growing are discussed.  相似文献   

10.
Triploid breeding has proven to be a valuable approach in Populus improvement. An ideal way to achieve triploid Populus is to cross diploids with tetraploids. In this study, we attempted to induce tetraploids of Populus adenopoda by inhibiting the first zygote division with high temperature exposure and increase the efficiency of tetraploid production. The relationship between zygote division stages and developmental changes of the cotton-like fiber in ovaries were analyzed, helping to guide the treatment towards the most accurate cytological stage. Among the 3,582 offspring, 32 teraploids were confirmed by both flow cytometric analysis and chromosome number counting. The highest efficacy of teraploid induction was 14.12 %. Significant differences between diploids and tetraploids were observed between the mean sizes and densities of leaf stoma. The tetraploid plants showed modified morphological characteristics, such as thicker leaves, modified leaf morphology, and stunted growth. Our finding showed that exposure during the first zygote division is an ideal method for teraploid induction in Populus.  相似文献   

11.
Crosses between 21 triploid hybrid Cobitis females and 19 C. taenia (2n = 48) males led to viable progeny; whereas no embryonic development was observed in crosses with tetraploid males (4n = 98). The ploidy status of 491 progenies randomly selected with flow cytometry (316) or chromosome analysis (175) revealed an average of 55.2 % triploids and 44.8 % tetraploids, but the ratio of 3n versus 4n fish did change during development. In the first 2 days after hatching, approximately 65.1 % of tetraploid larvae were observed. Their number decreased significantly to 30.8 and 6.2 % on average during 2–5 and 10–15 months of life, respectively. The karyotype of tetraploid progeny (4n = 98) included 3n = 74 chromosomes of the parental female and n = 24 of C. taenia male. The number of tetraploid progeny indicated indirectly that about 66 % of eggs from 3n females were fertilized with C. taenia. The rest of the eggs developed clonally via gynogenesis or hemiclonally via hybridogenesis into triploids of the same karyotype structure as parental females. We have documented for the first time that (at least under experimental conditions) tetraploids are commonly formed, but are less viable than triploids, and a ratio similar to what is found under natural conditions is finally attained. The current explanation concerning the ploidy and karyotype structure of the progeny confirms that the eggs of 3n Cobitis females are not only capable of maintaining all chromosomes but are also capable of incorporating the sperm genome, thus creating the potential to produce tetraploids.  相似文献   

12.
The general architecture of the mitotic apparatus was studied at the ultrastructural level in Drosophila cultured cells. Its two main characteristics are a very polarized spindle and a strong compartmentalization, ensured by large remnants of the nuclear envelope. Such compartmentalization has previously been reported for the rapid syncytial divisions of the early embryo; a similar finding in these cells with a long cycle strongly suggests that this organization constitutes a general mechanism for mitosis in Drosophila. We followed the modifications of these structures after a heat shock of 20, 50 or 120 min at 37°C. Contrary to interphase cells, mitotic cells appear very sensitive to hyperthermia. This stress treatment induced a disruption of the mitotic spindle, a reappearance and an extension of the Golgi apparatus, an inactivation of microtubule nucleation and a disorganization of the centrosome. This organelle seems the first to be affected by the heat shock response. The centrosome is not only inactivated, but also is structurally affected. During the recovery phase after heat stress, the mitotic cells presented a remarkable ring-shaped accumulation of electrondense material around the centrioles. We conclude that in Drosophila cells the mitotic phase, and more specifically the centrosome, are targets of the stress response.  相似文献   

13.
Tetraploid plants were successfully induced for the first time in Mitracarpus hirtus L., by overnight immersion of shoot meristems in 0.1 % colchicine solution, followed by in vitro culture leading to plant regeneration. Examination of ploidy level by flow cytometric analysis and counting chromosome number at metaphase confirmed that original diploid plant (WT1) contained chromosome number as 2n = 2x = 28, whereas 2n = 4x = 56 was observed in the tetraploids induced with colchicine treatment (CC102 and CC110). Thicker root formation, larger stomata (1.3–2 times), and lower density of stomata (1.7–4 times) were observed in these tetraploid plants. After transplantation to the pot, tetraploid plant (CC110) showed higher fresh weights of aerial part and leaves (1.5 and 1.4 times respectively) than diploid. However, the methanolic extracts from leaves of tetraploid line CC102 showed inhibition against human pathogenic bacterium, S. aureus while WT1 and CC110 showed no activity. GC–MS revealed 40 unique compounds present in CC102, but absent in WT1 and CC110. Through hierarchical clustering analysis the 40 unique compounds in CC102 formed a cluster group found to correlate with anti-S. aurens activity. These results suggested that tetraploid M. hirtus CC102 created in this study provides a novel source of compounds useful in fighting infectious disease.  相似文献   

14.
The ovary of triploid shrimp Fenneropenaeus chinensis was apparently impaired compared to that of the diploid shrimp at the same age. Therefore triploid shrimp ovary is possible to be taken as a model to understand the mechanism of ovary development of shrimp compared to that of the ovary of diploid shrimp at the same age. In the present study, a suppression subtractive hybridization (SSH) technique was applied to identify differentially expressed genes in the ovary between diploid and triploid shrimp. For the forward library (RNA from the ovary of triploid shrimp as the tester), 54 genes were identified. For the reverse library (RNA from the ovary of diploid shrimp as the tester), 16 genes were identified. The identified genes encoded proteins with multiple functions, including extracellular matrix components, cytoskeleton, cell growth and death, metabolism, genetic information processing, signal transduction/transport or immunity related proteins. Eleven differentially expressed genes were selected to be confirmed in the ovaries of triploid and diploid shrimp by semi-quantitative RT-PCR. Genes encoding spermatogonial stem-cell renewal factor, cytochrome c oxidase subunits I and II, clottable protein, antimicrobial peptide and transposase showed up-regulated expressions in the ovary of triploid shrimp. Genes encoding tubulin, cellular apoptosis susceptibility protein, farnesoic acid O-methyltransferase, thrombospondin and heat shock protein 90 genes showed higher expressions in the ovary of diploid shrimp. The differential expressions of the above genes are suggested to be related to the ovary development of shrimp. It will provide a new clue to uncover the molecular mechanisms underlying the ovarian development in penaeid shrimp.  相似文献   

15.

Background and Aims

Here evidence for reticulation in the pantropical orchid genus Polystachya is presented, using gene trees from five nuclear and plastid DNA data sets, first among only diploid samples (homoploid hybridization) and then with the inclusion of cloned tetraploid sequences (allopolyploids). Two groups of tetraploids are compared with respect to their origins and phylogenetic relationships.

Methods

Sequences from plastid regions, three low-copy nuclear genes and ITS nuclear ribosomal DNA were analysed for 56 diploid and 17 tetraploid accessions using maximum parsimony and Bayesian inference. Reticulation was inferred from incongruence between gene trees using supernetwork and consensus network analyses and from cloning and sequencing duplicated loci in tetraploids.

Key Results

Diploid trees from individual loci showed considerable incongruity but little reticulation signal when support from more than one gene tree was required to infer reticulation. This was coupled with generally low support in the individual gene trees. Sequencing the duplicated gene copies in tetraploids showed clearer evidence of hybrid evolution, including multiple origins of one group of tetraploids included in the study.

Conclusions

A combination of cloning duplicate gene copies in allotetraploids and consensus network comparison of gene trees allowed a phylogenetic framework for reticulation in Polystachya to be built. There was little evidence for homoploid hybridization, but our knowledge of the origins and relationships of three groups of allotetraploids are greatly improved by this study. One group showed evidence of multiple long-distance dispersals to achieve a pantropical distribution; another showed no evidence of multiple origins or long-distance dispersal but had greater morphological variation, consistent with hybridization between more distantly related parents.  相似文献   

16.
17.
ITS sequences of Ranunculus cantoniensis apparently an allotetraploid were polymorphic at ten nucleotide sites. ITS-based phylogeny of the complex and its allied species showed that ITS clones of the tetraploid were clustered with R. silerifolius var. silerifolius, R. chinensis, R. silerifolius var. dolicathus and R. trigonus. Chloroplast trnL-F phylogeny showed that the complex is a natural group, in which the tetraploid shared the same clade with R. silerifolius var. dolicathus and R. silerifolius var. silerifolius, whose genetic distances were zero. rDNA FISH showed that the longest rDNA-chromosome of the tetraploid was similar to that of R. silerifolius var. dolicathus exclusively. Combining trnL-F, ITS and FISH data, it is suggested that the most probable parents of the tetraploid were R. silerifolius var. silerifolius, R. chinensis and R. silerifolius var. dolicathus, among them R. silerifolius var. silerifolius donated most. Evidences from DNA sequences and chromosome FISH indicated that the tetraploid was most probably a homoploid hybrid. Thus, a scenario of the tetraploid formation is proposed: the tetraploid was synthesized by two rounds of hybridization. The first round was between two pairs of diploids, forming two tetraploids. The second round was between the two primary tetraploids, producing the allotetraploid, R. cantoniensis, eventually.  相似文献   

18.
SUMO conjugation of cellular proteins is essential for proper progression of mitosis. PIASy, a SUMO E3 ligase, is required for mitotic SUMOylation of chromosomal proteins, yet the regulatory mechanism behind the PIASy-dependent SUMOylation during mitosis has not been determined. Using a series of truncated PIASy proteins, we have found that the N terminus of PIASy is not required for SUMO modification in vitro but is essential for mitotic SUMOylation in Xenopus egg extracts. We demonstrate that swapping the N terminus of PIASy protein with the corresponding region of other PIAS family members abolishes chromosomal binding and mitotic SUMOylation. We further show that the N-terminal domain of PIASy is sufficient for centromeric localization. We identified that the N-terminal domain of PIASy interacts with the Rod/Zw10 complex, and immunofluorescence further reveals that PIASy colocalizes with Rod/Zw10 in the centromeric region. We show that the Rod/Zw10 complex interacts with the first 47 residues of PIASy which were particularly important for mitotic SUMOylation. Finally, we show that depletion of Rod compromises the centromeric localization of PIASy and SUMO2/3 in mitosis. Together, we demonstrate a fundamental mechanism of PIASy to localize in the centromeric region of chromosome to execute centromeric SUMOylation during mitosis.  相似文献   

19.
To identify the cellular target(s) responsible for thermal killing in the G1 phase of the cell cycle, synchronous cultures of Chinese hamster ovary cells (CHO) were heat shocked and studied for one cell cycle by time-lapse videomicroscopy and immunocytochemistry. At the first mitosis post-heating, the fraction of cells giving rise to multinucleated progeny approximately equaled the nonclonogenic fraction. In addition, the cells yielding multincleated progeny were delayed in prophase-metaphase relative to the cells yielding two uninucleated progeny (clonogenic cells). To study the basis for the delay in prophase-metaphase and subsequent formation of multinucleated cells, cells in mitosis were examined by immunofluorescence for spindle abnormalities. Multipolar mitotic spindles and chromosome misalignment were induced by heat. All multiple spindle poles induced by heat stained for pericentriolar material (PCM), the microtubule nucleating material of centrosomes. Heated cells in mitosis also contained additional foci of PCM which were not associated with the spindle. Cells made thermotolerant by a nonlethal heat shock were resistant to both thermal killing and the induction of multiple foci of PCM. Quantitative analysis revealed a good correlation between the fraction of cells with multipolar spindles, the fraction with more than two foci of PCM, and the nonclonogenic fraction. These data indicate that heat-induced alterations to the PCM of centrosomes resulted in multipolar mitotic spindles, delay in prophase-metaphase, and formation of multinucleated cells which were nonclonogenic. These results identify the centrosome as a G1 target for cell killing. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Heat shock induces chromosome loss in the yeast Candida albicans   总被引:5,自引:0,他引:5  
Summary The heat shock protocol described in this paper causes mitotic instability in log phase Candida albicans cells. Such instability is induced in diploid, aneuploid and tetraploid strains. The strains analysed are multiple heterozygotes which facilitates the detection of mitotic instability as manifested by the formation of homozygotes. Strains previously shows to be carrying cis linked mutant alleles show coincident segregation of the linked alleles. Conversely, strains which carry unlinked mutant alleles display no such coincident segregation. This segregation of complete linkage groups suggests that heat shock is inducing chromosome some loss in C. albicans. The application of this protocol to the genetics of the imperfect fungus C. albicans has produced evidence of at least three chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号