首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Eisenhauer N  Schädler M 《Oecologia》2011,165(2):403-415
The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on. This study therefore points to the necessity of also considering soil feedback mechanisms in order to gain a comprehensive and holistic understanding of the impacts of current global change phenomena on the stability of essential ecosystem functions.  相似文献   

2.
Interactions between spatially-separated aboveground and belowground biota exert important influences on the functioning of terrestrial ecosystems. Plant root exudates and litter inputs affect root-associated and decomposer sub-communities, which, in turn, regulate nutrient availability and plant growth. Ecosystem services theoretically attributed to specific functional components of aboveground or belowground biota are, therefore, influenced by indirect (plant-mediated) interactions with the wider community. Some recent studies have considered aboveground–belowground interactions in a climate change context, with implications for altered ecosystem service provision. This review is a conceptual discussion of the mechanisms by which aboveground–belowground interactions affect specific ecosystem services: control of herbivores by natural enemies, insect pollination and nutrient mineralization by soil decomposers. While some mechanisms are well-characterized, others are poorly understood. Reducing root and shoot herbivory, in addition to the direct plant benefit, indirectly promotes antagonism of the spatially-separate herbivore by its natural enemies. Soil decomposers and mycorrhizal fungi can increase shoot herbivore performance such that control by natural enemies is weakened, or initiate bottom-up trophic cascades which strengthen antagonism of shoot herbivores. Aboveground herbivory generally stimulates nutrient cycling by decomposers. Root herbivory and mycorrhizal association both appear to increase floral attractiveness to insect pollinators. Mechanisms reflect alterations to plant growth, nutritional quality and chemical defenses. Climate change has considerable potential to alter aboveground–belowground interactions, with largely unexplored implications for biological control, pollination and soil nutrient cycling.  相似文献   

3.
Interactions between the diversity of primary producers and that of decomposers--the two key functional groups that form the basis of all ecosystems--might have major consequences on the functioning of depauperate ecosystems. I present a simple ecosystem model in which primary producers (plants) and decomposers (microbes) are linked through material cycling. The model considers a diversity of plant organic compounds and a diversity of microbial species. Nutrient recycling efficiency from organic compounds to decomposers is then the key parameter that controls ecosystem processes (primary productivity, secondary productivity, producer biomass and decomposer biomass). The model predicts that microbial diversity has a positive effect on nutrient recycling efficiency and ecosystem processes through either greater intensity of microbial exploitation of organic compounds or functional niche complementarity, much like in plants. Microbial niche breadth and overlap should not affect ecosystem processes unless they increase the number of organic compounds that are decomposed. In contrast, the model predicts that plant organic compound diversity can only have a negative effect or, at best, no effect on ecosystem processes, at least in a constant environment. This creates a tension between the effects of plant diversity and microbial diversity on ecosystem functioning, which may explain some recent experimental results.  相似文献   

4.
Understanding non‐trophic interactions is critical to mechanistically linking community structure and ecosystem functioning. Despite the widespread occurrence of territoriality across animal taxa and ecosystems, the cascading ecological consequences of non‐trophic interactions between territorial animals and intruders have been poorly studied. We experimentally investigated the non‐trophic interaction between territorial ants and members of a dung decomposer community (i.e. predatory arthropods, maggots and coprophagous beetles) in an alpine meadow. We further examined how this non‐trophic interaction cascaded to influence ecosystem properties including dung removal rate, soil nutrient status and aboveground plant biomass surrounding dung pats. Results indicated that territorial interference of ants on key decomposers cascaded to affect plant growth. Specifically, ants significantly decreased the abundance of coprophagous beetles at the time of their peak‐abundance and hence decreased dung removal rates and soil nitrogen concentrations, ultimately decreasing aboveground plant biomass. The strength of this non‐trophic cascading effect was comparable to those reported in studies addressing trophic cascades triggered by predator–prey interactions. Our findings suggest that the non‐trophic interactions and associated cascading effects stemming from territorial behavior should be incorporated into ecological network modeling and research addressing biodiversity–ecosystem functioning relationships.  相似文献   

5.
Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.  相似文献   

6.
Ecosystems comprise living organisms and organic matter or detritus. In earlier community ecology theories, ecosystem dynamics were normally understood in terms of aboveground, green‐world trophic interaction networks, or food webs. Recently, there has been growing interest in the role played in ecosystem dynamics by detritus in underground, brown‐world interactions. However, the role of decomposers in the consumption of detritus to produce nutrients in ecosystem dynamics remains unclear. Here, an ecosystem model of trophic food chains, detritus, decomposers, and decomposer predators demonstrated that decomposers play a totally different role than that previously predicted, with regard to their relationship between nutrient cycling and ecosystem stability. The high flux of nutrients due to efficient decomposition by decomposers increases ecosystem stability. However, moderate levels of ecosystem openness (with movement of materials) can either greatly increase or decrease ecosystem stability. Furthermore, the stability of an ecosystem peaks at intermediate openness because open systems are less stable than closed systems. These findings suggest that decomposers and the food‐web dynamics of brown‐world interactions are crucial for ecosystem stability, and that the properties of decomposition rate and openness are important in predicting changes in ecosystem stability in response to changes in decomposition efficiency driven by climate change.  相似文献   

7.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

8.
The responses of three decomposer groups (earthworms, springtails and microorganisms) to manipulations in plant species diversity (1, 2, 4, 8), plant functional group diversity (1, 2, 3, 4) and functional group identity (grasses, legumes, small herbs, tall herbs) were studied in a microcosm experiment. Separate and combined treatments with earthworms and springtails were set up. Two earthworm species representing major functional groups of earthworms in grasslands were investigated, the endogeic species Aporrectodea caliginosa (Savigny) and the anecic species Lumbricus terrestris L. For springtails three species were investigated, the hemiedaphic species Heteromurus nitidus (Leleup), Folsomia candida (Willem) and the euedaphic species Protaphorura fimata (Gisin). Plant species and functional group diversity beneficially affected A. caliginosa (increase in body weight and incorporation of 15N from labelled litter) and P. fimata (density), presumably by changing the quality of belowground resources. In contrast, the biomass of L. terrestris decreased with plant species diversity but only in presence of legumes. For H. nitidus and F. candida the identity of plant functional groups was more important than plant species diversity per se. Also, the response of F. candida depended on earthworms. Microbial respiration was reduced by earthworms in more diverse plant communities, which correlated with root biomass. In contrast, microbial biomass was not affected by plant species diversity. The results suggest that belowground resource inputs from plant roots strongly modify decomposer performance and that the quality of the resources that enter the belowground subsystem is more important than their quantity. The responses of decomposers generally were not correlated with below‐ or aboveground plant productivity. In addition, the results document that effects of plant community composition on the performance of decomposer species depend on the presence of other decomposers.  相似文献   

9.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

10.
Ke X  Scheu S 《Oecologia》2008,157(4):603-617
Management practices of arable systems determine the distribution of soil organic matter thereby changing decomposer animal activity and their impact on nutrient mineralization, plant growth and plant-herbivore interactions. Decomposer-mediated changes in plant growth and insect pest performance were investigated in wheat-aphid model systems in the greenhouse. Three types of litter distribution were established: litter patch at the soil surface (simulating mulching), litter patch deeper in soil (simulating ploughing) and litter homogeneously mixed into soil (simulating disk cultivation). The litter was labelled with (15)N to follow the mineralization and uptake of nutrients by the plants. Earthworms (Aporrectodea caliginosa) and Collembola (Protaphorura armata) were included as representatives of major functional groups of decomposers. Wheat (Triticum aestivum) was planted and aphids (Rhophalosiphum padi) were introduced to leaves as one of the most important pests. Earthworms, Collembola and litter distribution affected plant growth, N acquisition and aphid development in an interactive way. Earthworms and Collembola increased biomass of seeds, shoots and roots of wheat. Increased plant growth by earthworms and Collembola was mainly due to increased transfer of N from soil (rather than litter) into plants. Despite increasing plant growth, earthworms reduced aphid reproduction. Aphid reproduction was not correlated closely with plant N concentrations, but rather with the concentration of litter N in wheat. Unexpectedly, both Collembola and earthworms predominantly affected the mobilization of N from soil organic matter, and by altering the distribution of litter earthworms reduced infestation of crops by aphids via reducing plant capture of litter N, in particular if the litter was concentrated deeper in soil. The results suggest that management practices stimulating a continuous moderate increase in nutrient mobilization from soil organic matter rather than nutrient flushes from decomposing fresh organic matter result in maximum plant growth with minimum plant pest infestation.  相似文献   

11.
Most ecologists acknowledge that plants are subject to complex interactions between both below- and aboveground dwelling animals. However, these complex interactions are seldomly investigated simultaneously. In a factorial common garden experiment we tested single and combined effects of decomposers, root herbivores and leaf herbivores on the growth, flower visitation, and abundance of naturally colonizing aphids and parasitoids on wild mustard ( Sinapis arvensis ). We found that the individual presence of either root herbivores or decomposers resulted in increased aphid abundance, demonstrating that the same aboveground plant–insect interaction can be released by different belowground processes. Enhanced aphid densities caused higher numbers of parasitoids. Furthermore, decomposers increased plant growth and plant fitness (measured as the number of seeds produced), indicating that mustard may benefit from nutrients provided by decomposers, regardless whether plants are attacked by root herbivores or leaf herbivores, or both simultaneously. More flower visits were observed in plants attacked by root herbivores but without leaf herbivores than in plants with both herbivores, suggesting that root herbivory can modify flower attractivity to pollinators. Our results suggest that patterns in plant–insect interactions above the ground are not only affected by aboveground factors but also by a wealth of different belowground processes mediated by the plant.  相似文献   

12.
Due to its ability to create aboveground conditions that favour plant diversity, mowing is often used to preserve the high conservation value of semi-natural species-rich grasslands. However, mowing can also affect belowground conditions. By decreasing plant carbon supply to soil, mowing can suppress the activity of soil decomposers, diminish plant nutrient availability and thus create a feedback on plant growth. In this study, we first documented the effects of three-year mowing on plant community structure in a species-rich grassland. We found that mowing decreased the total areal cover of woody plants and increased the total cover of leguminous forbs. At the species level, mowing further increased the cover of two non-leguminous forbs, Prunella vulgaris and Sagina procumbens. Mowing did not affect the species number, diversity or evenness of the plant community. To study whether any of these effects could be explained by mowing-induced changes in the soil, and particularly by reduced nutrient availability, we then collected soil from different treatment plots and monitored the growth of nine plant species in these soils in a greenhouse. Plant growth did not differ between soils collected from mowed and unmowed plots, suggesting that our mowing regimes did not impose such changes in soil decomposer activity and nutrient supply that would feedback on plant growth. Moreover, each of the nine species responded equally to the different nutrient availability in different parts of the grassland, which indicates that even if mowing had reduced plant nutrient supply, this would not have led to changes in plant community structure. It appears that those changes in aboveground vegetation that we recorded after three years of mowing were purely due to the aboveground effects, such as frequent cutting of woody plants and enhanced light availability for low-growing forbs.  相似文献   

13.
Although plant–animal interactions like pollination and herbivory are obviously interdependent, ecological investigations focus mainly on one kind of interaction ignoring the possible significance of the others. Plants with flowers offer an extraordinary possibility to study such mutualistic and antagonistic interactions since it is possible to measure changes in floral traits and fitness components in response to different organisms or combinations of them. In a three factorial common garden experiment we investigated single and combined effects of root herbivores, leaf herbivores and decomposers on flowering traits and plant fitness of Sinapis arvensis. Leaf herbivory negatively affected flowering traits indicating that it could significantly affect plant attractiveness to pollinators. Decomposers increased total plant biomass and seed mass indicating that plants use the nutrients liberated by decomposers to increase seed production. We suggest that S. arvensis faced no strong selection pressure from pollen limitation, for two reasons. First, reduced nutrient availability through leaf herbivory affected primarily floral traits that could be important for pollinator attraction. Second, improved nutrient supply through decomposer activity was invested in seed production and not in floral traits. This study indicates the importance of considering multiple plant–animal interactions simultaneously to understand selection pressures underlying plant traits and fitness.  相似文献   

14.
陆地生态系统混合凋落物分解研究进展   总被引:26,自引:8,他引:18  
李宜浓  周晓梅  张乃莉  马克平 《生态学报》2016,36(16):4977-4987
凋落物分解在陆地生态系统养分循环与能量流动中具有重要作用,是碳、氮及其他重要矿质养分在生态系统生命组分间循环与平衡的核心生态过程。自然生态系统中,植物群落大多具有较高的物种丰富度和多样性,其混合凋落物在分解过程中也更有可能发生养分传递、化学抑制等种间互作,形成多样化的分解生境,多样性较高的分解者类群以及复杂的级联效应分解,这些因素和过程均对研究混合凋落物分解过程、揭示其内在机制形成了极大的挑战。从构成混合凋落物物种丰富度和多样性对分解生境、分解者多样性及其营养级联效应的影响等方面,综合阐述混合凋落物对陆地生态系统凋落物分解的影响,探讨生物多样性在凋落物分解中的作用。通过综述近些年的研究发现,有超过60%的混合凋落物对其分解速率的影响存在正向或负向的效应。养分含量有差异的凋落物混合分解过程中,分解者优先利用高质量凋落物,使低质量的凋落物反而具有了较高的养分有效性,引起低质量凋落物分解加快并最终使混合凋落物整体分解速率加快;而凋落物物种丰富度对土壤动物群落总多度有轻微的影响或几乎没有影响,但是对线虫和大型土壤动物的群落组成和多样性有显著影响,并随着分解阶段呈现一定动态变化;混合凋落物改变土壤微生物生存的理化环境,为微生物提供更多丰富的分解底物和养分,优化微生物种群数量和群落结构及其分泌酶的活性,并进一步促进了混合凋落物的分解。这些基于植物-土壤-分解者系统的动态分解过程的研究,表明混合凋落物分解作用不只是经由凋落物自身质量的改变,更会通过逐级影响分解者多样性水平而进一步改变分解速率和养分释放动态,说明生物多样性确实在一定程度上调控凋落物分解及其养分释放过程。  相似文献   

15.
Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries.  相似文献   

16.
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with 15N pool dilution and soil microbial communities were characterized with DNA‐based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia‐oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.  相似文献   

17.
In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open‐top chamber warming treatment over a 3‐year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3 years of our study (2010–2012), we advanced snowmelt by 4, 15, and 10 days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early‐season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1‐ to 2‐week changes in timing of snowmelt alone are not enough to drive season‐long changes in soil microbial and nutrient cycling processes.  相似文献   

18.
S. Saj  J. Mikola  F. Ekelund 《Plant and Soil》2008,311(1-2):141-149
Legume–grass interactions have a great influence on grassland primary production and it was recently shown how defoliation of a legume can increase the transfer of fixed N to a neighbouring grass. It has also been shown that defoliation of a plant can increase soil microbial activity and lead to better soil N availability in the rhizosphere of the defoliated plant. We combined these two perspectives and tested whether defoliation of a legume (Lotus corniculatus) can enhance N nutrition of the neighbouring grass (Holcus lanatus) by increasing growth of soil decomposer biota and the availability of soil organic matter N for grass uptake. We grew mixtures of L. corniculatus and H. lanatus in grassland soil that included 15N-labelled L. corniculatus litter. In half of the systems, we subjected L. corniculatus to a defoliation treatment mimicking insect larvae feeding. At destructive harvests 1, 3, 9 and 30 days after the last defoliation event, we determined how L. corniculatus defoliation affected decomposer microbes, protozoa and nematodes and whether these changes among decomposers created a feedback on the growth and 15N uptake of the neighbouring H. lanatus. Defoliation reduced the growth and litter-N uptake, but increased shoot N concentration of L. corniculatus. Of the soil variables measured, defoliation doubled the number of bacterial-feeding protozoa, but did not affect the abundance of decomposer microbes and bacterial- and fungal-feeding nematodes. Defoliation did not have statistically significant effects on H. lanatus shoot growth, shoot N concentration or litter-N uptake. Our results demonstrate how defoliation-induced changes in legume ecophysiology can affect the growth of decomposers in soil. However, these effects did not appear to lead to a significant change in the availability of soil organic N to the neighbouring grass. It seems that when positive effects of legume defoliation on grass N nutrition are found in grassland ecosystems, these are more likely to be explained by direct transfer of fixed N rather than changes in the availability of soil organic matter N.  相似文献   

19.
Responses of aquatic macrophytes to leaf herbivory may differ from those documented for terrestrial plants, in part, because the potential to maximize growth following herbivory may be limited by the stress of being rooted in flooded, anaerobic sediments. Herbivory on aquatic macrophytes may have ecosystem consequences by altering the allocation of nutrients and production of biomass within individual plants and changing the quality and quantity of aboveground biomass available to consumers or decomposers. To test the effects of leaf herbivory on plant growth and production, herbivory of a dominant macrophyte, Nymphaea odorata, by chrysomelid beetles and crambid moths was controlled during a 2-year field experiment. Plants exposed to herbivory maintained, or tended to increase, biomass and aboveground net primary production relative to controls, which resulted in 1.5 times more aboveground primary production entering the detrital pathway of the wetland. In a complementary greenhouse experiment, the effects of simulated leaf herbivory on total plant responses, including biomass and nutrient allocation, were investigated. Plants in the greenhouse responded to moderate herbivory by maintaining aboveground biomass relative to controls, but this response occurred at the expense of belowground growth. Results of these studies suggest that N. odorata may tolerate moderate levels of herbivory by reallocating biomass and resources aboveground, which in turn influences the quantity, quality and fate of organic matter available to herbivores and decomposers.  相似文献   

20.
The plant metabolite composition is modulated by various abiotic and biotic factors including nutrient availability and herbivory. In turn, induced changes in plant quality can affect herbivore performance and mediate indirect interactions between spatially separated herbivores sharing a host. Studies on plant-mediated herbivore interactions have been carried out at single fertilization regimes only, but we hypothesized that nutrient availability modifies these interactions. Therefore, we studied the interactions between two vascular tissue herbivores, the aboveground feeding aphid Brevicoryne brassicae and the belowground infesting nematode Heterodera schachtii, on Arabidopsis thaliana grown under two nitrate fertilization conditions (varying by 33 %). Furthermore, we investigated plant growth and primary metabolic responses to fertilization and herbivore treatments, which could potentially mediate these interactions, as the herbivores may act as metabolic sinks. Whereas nematodes had no effects on aphids, aphid presence influenced nematodes in opposite directions, depending on fertilization: at low nitrate supply, aphids had a promoting effect on nematodes, whereas at high nitrate fertilization they lowered the nematode infestation compared to control plants. Plants produced significantly more biomass under high nitrate supply but C and N contents were not altered. Primary metabolite profiles differed only marginally between roots of both fertilization treatments in plants with and without aphids, indicating that nematodes may respond to these or other metabolic modifications, which are caused by minute environmental changes, in a sensitive way. Our results highlight the need to consider the importance of plant nutrient availability on the outcome of interactions between co-occurring herbivores in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号