首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider optimal growth of larval stages in complex parasite life cycles where there is no constraint because of host immune responses. Our model predicts an individual's asymptotic size in its intermediate host, with and without competition from conspecific larvae. We match observed variations in larval growth patterns in pseudophyllid cestodes with theoretical predictions of our model. If survival of the host is vital for transmission, larvae should reduce asymptotic size as intensity increases, to avoid killing the host. The life history strategy (LHS) model predicts a size reduction <1/intensity, thus increasing the parasite burden on the host. We discuss whether body size of competing parasites is an evolved LHS or simply reflects resource constraints (RC) on growth fixed by the host, leading to a constant total burden with intensity. Growth under competition appears comparable with "the tragedy of the commons", much analysed in social sciences. Our LHS prediction suggests that evolution generates a solution that seems cooperative but is actually selfish.  相似文献   

2.
Oxidoreductases which control the metabolic end-products in helminth parasites and their intermediate hosts were reviewed, in a trial to elucidate the respiratory metabolism during host-parasite associations. Special attention was given to Schistosoma parasites and their molluscan hosts.  相似文献   

3.
Larval helminths that share the same intermediate host may or may not also share the same definitive hosts. If one or more of these helminth species can manipulate the phenotype of the intermediate host, there can be great advantages or severe costs for other helminths resulting from co-occurring with a manipulator, depending on whether they have the same definitive host or not. Among 2372 specimens of the amphipod Echinogammarus stammeri collected from the river Brenta, northern Italy, there was a positive association between two acanthocephalan species with the same fish definitive hosts, the relatively common Pomphorhynchus laevis and the much less prevalent Acanthocephalus clavula.The number of cystacanths of P. laevis per infected amphipod, which ranged from one to five, did not influence the likelihood that the amphipod would also host A. clavula. A third acanthocephalan species, Polymorphus minutus,which matures in birds, showed no association with either of the two other species. These results show that associations among helminth species in intermediate hosts are not random, and are instead the product of selection favouring certain pathways of transmission.  相似文献   

4.
5.
Nancy F. Smith 《Oecologia》2001,127(1):115-122
Spatial variation in parasitism is commonly observed in intermediate host populations. However, the factors that determine the causes of this variation remain unclear. Increasing evidence has suggested that spatial heterogeneity in parasitism among intermediate hosts may result from variation in recruitment processes initiated by definitive hosts. I studied the perching and habitat use patterns of wading birds, the definitive hosts in this system, and its consequences for the recruitment of parasites in snail intermediate hosts. Populations of the mangrove snail, Cerithidea scalariformis, collected from mangrove swamps on the east coast of central Florida are parasitized by a diverse community of trematode parasites. These parasites are transmitted from wading birds, which frequently perch on dead mangrove trees. I tested the hypothesis that mangrove perches act as transmission foci for trematode infections of C. scalariformis and that the spatial variation of parasitism frequently observed in this system is likely to emanate from the distribution of wading birds. On this fine spatial scale, definitive host behaviors, responding to a habitat variable, influenced the distribution, abundance and species composition of parasite recruitment to snails. This causal chain of events is supported by regressions between perch density, bird abundance, bird dropping density and ultimately parasite prevalence in snails. Variation between prevalence of parasites in free-ranging snails versus caged snails shows that while avian definitive hosts initiate spatial patterns of parasitism in snails through their perching behaviors, these patterns may be modified by the movement of snail hosts. Snail movement could disperse their associated parasite populations within the marsh, which may potentially homogenize or further increase parasite patchiness initiated by definitive hosts.  相似文献   

6.
Morphological adaptations of intestinal helminths.   总被引:1,自引:0,他引:1  
Nematodes, trematodes, cestodes, and acanthocephalans each have become adapted in different ways to the microenvironment of the vertebrate intestine. Life in this specialized habitat affords parasites a reliable source of nutrients, a relatively homeostatic environment, and protection from predators but, in exchange for these advantages, presents the special challenges of exposure to digestive enzymes, normal peristalsis, and host immune response to infection. Logically, the surface of the parasite should be the first part of the organism to encounter such challenges, and, for this reason, any response or reaction by the parasite is expected to be manifested at the parasite-host interface. Morphological adaptations of intestinal helminths to their microenvironment include modification of the tegumental surface that affords protection and increases absorptive surface area, development of specialized attachment organs, and, in some cases, complete loss of their own internal digestive system. Representative examples of such adaptations by helminths are described and discussed in terms of the parasite's nutritional requirements, site selection, and host specificity, and the possibility is suggested that some helminths may have adapted in ways that exploit host defensive mechanisms for their own benefit.  相似文献   

7.
Aim We used published inventories of trematodes in Littorina littorea (L.) and Hydrobia ulvae (Pennant) in European seas to search for two basic biogeographical patterns in the spatial occurrence of various trematode species: (1) do parasite distribution and richness patterns in the two host snails overlap with known ecoregions of free‐living organisms; and (2) does trematode species richness in the snails follow latitudinal or longitudinal gradients? Location North East Atlantic. Methods We used multidimensional scaling (MDS), analysis of similarity (ANOSIM) and analysis of variance (ANOVA) to test whether there were overlaps of parasite distribution and richness with known ecoregions of free‐living organisms. In addition, we used linear regression analyses to test whether trematode richness in snails (corrected for sampling effort) was correlated with the latitude or longitude of the sampling sites. Results When corrected for sampling effort, mean trematode species richness per site did not differ among the different ecoregions in L. littorea. In contrast, in H. ulvae, mean species richness was much lower for sites from the Celtic Sea compared with sites from the Baltic Sea and the North Sea. Based on the results of MDS analyses, trematode species composition was distinct among ecoregions; in particular, communities from the Baltic Sea differed markedly from communities in the Celtic Sea, for both snail species. Latitude and longitude were not significantly correlated with parasite species richness in either snail species. Most trematode species had restricted distributions, and only three species in L. littorea and five species in H. ulvae occurred at more than 50% of the sites. Main conclusions There is more structure in the large‐scale distribution of trematodes in gastropods than one would expect from the large‐scale dispersal capabilities of their bird and fish final hosts. We propose mechanisms based both on limited dispersal via fish and bird final hosts and on gradients in environmental factors to explain the observed patterns.  相似文献   

8.
9.
Various processes can generate associations between the larvae of different helminth species in their fish intermediate or paratenic host. We investigated the pairwise associations among larval helminth species in eight different fish populations, using two different coefficients of associations, in order to determine in what situations they are strongest. All helminth species included use the fish studied as either their second intermediate host or their paratenic host, and are acquired by the fish when it ingests an infected first intermediate host. The intensity of infection correlated positively with fish length for most helminth species. Pairs of species which both exhibited positive correlations with fish length tended to be more strongly associated with one another, although this tendency was not pronounced. Similarity in life cycle had a more important influence on pairwise associations. Among the 62 pairwise associations that could be computed, pairs of helminth species that shared both first intermediate hosts and definitive hosts were the most strongly associated, followed by pairs that shared only one other host, and finally by pairs that did not share other hosts. The results suggest that assemblages of larval helminth parasites in fish are not random collections of locally available species, but rather structured packets of larval parasites that travel together along common transmission routes.  相似文献   

10.
Avian parents and social insect colonies are victimized by interspecific brood parasites—cheats that procure costly care for their dependent offspring by leaving them in another species' nursery. Birds and insects defend themselves from attack by brood parasites; their defences in turn select counter‐strategies in the parasite, thus setting in motion antagonistic co‐evolution between the two parties. Despite their considerable taxonomic disparity, here we show striking parallels in the way that co‐evolution between brood parasites and their hosts proceeds in insects and birds. First, we identify five types of co‐evolutionary arms race from the empirical literature, which are common to both systems. These are: (a) directional co‐evolution of weaponry and armoury; (b) furtiveness in the parasite countered by strategies in the host to expose the parasite; (c) specialist parasites mimicking hosts who escape by diversifying their genetic signatures; (d) generalist parasites mimicking hosts who escape by favouring signatures that force specialization in the parasite; and (e) parasites using crypsis to evade recognition by hosts who then simplify their signatures to make the parasite more detectable. Arms races a and c are well characterized in the theoretical literature on co‐evolution, but the other types have received little or no formal theoretical attention. Empirical work suggests that hosts are doomed to lose arms races b and e to the parasite, in the sense that parasites typically evade host defences and successfully parasitize the nest. Nevertheless hosts may win when the co‐evolutionary trajectory follows arms race a, c or d. Next, we show that there are four common outcomes of the co‐evolutionary arms race for hosts. These are: (1) successful resistance; (2) the evolution of defence portfolios (or multiple lines of resistance); (3) acceptance of the parasite; and (4) tolerance of the parasite. The particular outcome is not determined by the type of preceding arms race but depends more on whether hosts or parasites control the co‐evolutionary trajectory: tolerance is an outcome that parasites inflict on hosts, whereas the other three outcomes are more dependent on properties intrinsic to the host species. Finally, our review highlights considerable interspecific variation in the complexity and depth of host defence portfolios. Whether this variation is adaptive or merely reflects evolutionary lag is unclear. We propose an adaptive explanation, which centres on the relative strength of two opposing processes: strategy‐facilitation, in which one line of host defence promotes the evolution of another form of resistance, and strategy‐blocking, in which one line of defence may relax selection on another so completely that it causes it to decay. We suggest that when strategy‐facilitation outweighs strategy‐blocking, hosts will possess complex defence portfolios and we identify selective conditions in which this is likely to be the case.  相似文献   

11.
Defined order of evolutionary adaptations: experimental evidence   总被引:1,自引:0,他引:1  
Organisms often adapt to new conditions by means of beneficial mutations that become fixed in the population. Often, full adaptation requires several different mutations in the same cell, each of which may affect a different aspect of the behavior. Can one predict order in which these mutations become fixed? To address this, we experimentally studied evolution of Escherichia coli in a growth medium in which the effects of different adaptations can be easily classified as affecting growth rate or the lag‐phase duration. We find that adaptations are fixed in a defined and reproducible order: first reduction of lag phase, and then an increase of the exponential growth rate. A population genetics theory explains this order, and suggests growth conditions in which the order of adaptations is reversed. We experimentally find this order reversal under the predicted conditions. This study supports a view in which the evolutionary path to adaptation in a new environment can be captured by theory and experiment.  相似文献   

12.
Data on intestinal parasite infections for South American Indians in prehistoric times as revealed by coprolite analysis are being used to support transoceanic migration routes from the Old World to the New World. These same findings on modern semi-isolated aborigines, considered persisting prehistoric patterns, are also of great importance as indicators of pre-Columbian peopling of South America. This is the case for the Lengua Indians from Paraguay, studied in the 1920s, and the Yanomami and the Salum? from Brazil, studied in the 1980s. The intestinal parasitic profile of these groups can be empirically associated with culture change, but no clear correlations with the population biology of their hosts can be made at present because of scarcity of data.  相似文献   

13.
14.
Individual Arctic charr (Salvelinus alpinus) from Fjellfr?svatn, northern Norway, could be categorized by their stomach contents as zooplanktivores or benthivores. Feeding specialization among these fish was evident from negative correlations between helminths transmitted by pelagic copepods (Diphyllobothrium dendriticum and D. ditremum) and those transmitted by the benthic amphipod Gammarus lacustris (Cystidicola farionis and Cyathocephalus truncatus). Occurrences of parasite species acquired from the same types of invertebrate were positively correlated in the fish. Strong relationships among habitat use, diet, and helminth infections among the Arctic charr indicated persistent foraging patterns involving long-term habitat use and feeding specialization. The distribution of all parasite species was highly aggregated in the fish samples, measured by the exponent k of the fitted negative binomial distributions (range: 0.5-7.5) and the variance-to-mean ratios (s2/mean, range: 5-85). Charr specializing on either copepods or Gammarus predominantly contributed to high-intensity class intervals within the overall frequency distributions of the corresponding parasite species. Such fish had low infection intensities of helminths transmitted by other prey organisms. The detailed analyses of the parasite frequency distributions for fish with different habitat or feeding preferences evidently show how heterogeneity in trophic behavior contributes strongly to the commonly observed aggregation of helminths among hosts under natural conditions.  相似文献   

15.
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative‐genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome‐enabled inferences to envision plausible narratives and scenarios for important transitions.  相似文献   

16.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

17.
Cuckoos, cowbirds and hosts: adaptations, trade-offs and constraints   总被引:1,自引:0,他引:1  
The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite-host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号