首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquatic plants usually establish following wetland creation from a variety of mechanisms including animal transport, inflows from nearby wetlands, wind dispersal, and seed banks if they are available. However, at created wetlands that are isolated from natural wetlands, aquatic plant communities may not establish even after 10 or more years. One method of improving the establishment of aquatic plants is through the use of salvaged-marsh soils. Using this method, wetland soil from a donor site is collected and spread across the basin of the created wetland. When the proper hydrologic regime is reached at the created site, the seed bank from the donor soil is then present to take advantage of the uncolonized site. Over 1500 wetlands have been created in northeast Wyoming, USA from bentonite mining and most of them have not developed submersed and emergent plant communities due to isolation from plant sources. Our goal was to evaluate the effectiveness of using salvaged-wetland soil as a tool for improving plant growth at created wetlands. Our study took place at 12 newly created wetlands that were isolated from other wetlands by >5 km. Six wetlands were treated as reference wetlands, with no introductions of seeds or propagules. At the other six wetlands we spread ≈10–15 cm of salvaged soil from a donor wetland during the winter of 1999–2000. To identify the potential plants in donor soil, we collected 10 random samples from the donor wetlands and placed them within wetland microcosms in a greenhouse where they were treated to either moist-soil conditions (water at or just below the soil line) or submersed conditions (water levels maintained at 15–30 cm). Treatment wetlands were evaluated for plant growth during the fall of 2000 and 2001, whereas the greenhouse samples were grown for two growing seasons then harvested. Our results show that using salvaged wetland soil increases: (1) the number of plant species present at a wetland over time, (2) the total vegetation coverage in a treated wetland over time, and (3) the total plant biomass in a treated wetland. The species pool available in the salvaged wetland soil was limited to 10 obligate wetland species, but several of them are considered valuable to waterfowl and other wildlife. Furthermore, salvaged-wetland soil could be useful for ameliorating poor substrate conditions (i.e., bentonite) and improving conditions for the establishment of additional species. One concern with this technique is the introduction of invasive or exotic species that could form monocultures of undesirable plants (e.g., cattail [Typha spp.]); introducing more desirable species during the application of salvaged soil could reduce this probability. We believe incorporating salvaged-wetland soil during basin construction could be used to increase the value and productivity of created wetlands in this region.  相似文献   

2.
In Estonia, as in other countries, the area of wetlands has diminished remarkably due to different utilization for economic needs. Comparatively large areas of natural wetlands have, however, been preserved. The country’s economic and political situation has changed rapidly since the regaining of independence in 1991 and accession to the European Union in 2004 brought about new challenges for the sustainable use of natural resources. This paper provides an update of conditions of wetlands in Estonia and, in part, represents an update of the relevant materials for Estonia that are described for the country when it was under the rule of the former USSR (Botch and Masing 1983, this volume). We review the diversity and status of wetlands in Estonia and describe the main problems and challenges of sustainable wetland use. Substantial progress has been achieved in Estonia in the area of wetland conservation and a significant proportion of valuable wetlands (a total of 33 wetland habitat types covering more than 300,000 ha) are legally protected and included in the integral and united system of protected areas. All Special Protection Areas and 80% of Special Conservation Areas in the Natura 2000 network represent a lesser or greater amount of wetland habitats. The main challenges of wetland preservation and use are: (1) management of drained wetland areas that have become sources of greenhouse gases; (2) attaining the sustainable use of peat resources and ensuring the restoration of cut-away peatlands; (3) maintenance of the traditional management of valuable semi-natural wetlands. In addition, the increasing pressure of various development projects and tourism on Estonia’s wetland resources need to be evaluated. Wetlands are also seen as an important basis for sustainable development and about 100 wetlands in Estonia that are used for primary or secondary treatment of wastewater. Energy production from wetland plant biomass is considered to be a promising source for small-scale heating plants.  相似文献   

3.
Wetland restoration practices can include rehabilitating degraded wetlands or creating new wetlands. Empirical evidence is needed to determine if both rehabilitated and created wetlands can support the same macroinvertebrate communities as their natural counterparts. We measured long‐term macroinvertebrate community change in seasonal wetlands known as Delmarva Bays in Maryland, U.S.A. We compared a rehabilitated, a created, and a natural Delmarva Bay. We hypothesized that the created and rehabilitated wetlands would develop different macroinvertebrate communities. We also hypothesized that the community composition of the rehabilitated wetland would become more similar to that of the natural wetland than to that of the created wetland over 9 years encompassed by this study. We monitored the macroinvertebrates, including both predators and primary consumers, and environmental conditions in the three wetlands from March to August in 2005, 2006, 2007, and 2012. Cluster analysis indicated that from 2005 to 2007, the macroinvertebrate community of the rehabilitated wetland and the created wetland were more similar to each other than to the natural wetland. In 2012, the rehabilitated wetland was more similar to the natural wetland than to the created wetland. This similarity was driven principally by changes in the composition of primary consumer taxa. Our results suggest that rehabilitated Delmarva Bays are more likely to support a natural macroinvertebrate community than are created wetlands. Restoration practices that rehabilitate existing wetlands may be preferred over practices that create new wetlands when restoration project goals include developing natural macroinvertebrate communities in a short period of time.  相似文献   

4.
The objective of this study was to characterize the zooplankton and phytoplankton assemblages of four different types of wetlands and to evaluate their use as environmental indicators. Total abundances, community composition, and species diversity were evaluated for zooplankton and phytoplankton assemblages from 24 wetlands and related to water quality variables. During August 1995, six representative sites were sampled from four types of wetlands designated as constructed, impacted, non-impacted, or temporary. The plankton assemblages of all wetlands were dominated by cosmopolitan crustacean, rotifer, and phytoplankton taxa typical of lake plankton communities. Species diversity, richness, and evenness of zooplankton and phytoplankton assemblages did not differ significantly among the wetland types. Total zooplankton abundance was significantly (p < 0.01) related to chlorophyll a and total phosphorus concentrations over the range of trophic conditions. Mean zooplankton densities and phytoplankton biovolumes were similar among the wetlands, however, the relative abundances of major zooplankton groups differed among the wetland types. Cyanophytes, primarily Oscillatoria spp., were a major component of the phytoplankton across all four wetland types, and were significantly more abundant within the constructed and temporary sites. On average, rotifers accounted for 79% of total zooplankton abundance within the constructed wetlands and were much less dominant in the non-impacted and temporary wetlands. Cladoceran, copepodite, and adult copepod concentrations were low in the constructed and impacted wetlands and increased in the non-impacted and temporary wetlands in conjunction with increased chlorophytes and cryptophytes. Our preliminary survey suggests that abiotic factors which are known to directly affect phytoplankton may indirectly affect zooplankton composition in such a way as to use zooplankton assemblages as indicators of water quality. However, further study incorporating seasonal dynamics and the influence of predators on zooplankton assemblages is needed to fully assess the use of zooplankton community composition as an environmental indicator for wetland systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Wetlands are among the most threatened ecosystems worldwide due to climate change and land-use conversion. Regional biodiversity of temporary wetlands is dependent on the existence of habitat complexes with variable hydroperiods. Because temperature and rainfall regimes are predicted to shift globally, together with land-use patterns, different scenarios of wetland loss are expected in the future. To understand how wetland biodiversity might change in the future, it is important to evaluate how the loss of particular hydroperiods will affect overall diversity in a region. Using invertebrate datasets from five wetland complexes distributed across South and North America, we calculated beta diversity metrics for each region. Then we contrasted those metrics to simulations of sequential deletions of subsets (30%) of the long-, moderate- and short-hydroperiod wetlands to assess which wetland class would most affect invertebrate beta diversity in each region. Deletions of the short-hydroperiod wetlands led to the most significant decline in beta diversity. However, deletion effects of different wetland classes varied across study regions, with a negative correlation existing between deletions of the long- and short-hydroperiod wetlands on invertebrate beta diversity. Our simulations indicate that loss of short-hydroperiod wetlands will have the most significant effects on invertebrate beta diversity, but loss of long-hydroperiod wetlands will also be important. Thus, wetlands from both hydroperiod extremes should be considered when assessing potential biodiversity declines associated with habitat loss.  相似文献   

6.
Land-use practices surrounding a wetland may be as important for maintaining wildlife populations as the wetland itself. Although imperiled species may appear to be more impacted than ubiquitous species from changes in the landscape surrounding wetlands, studies of common wetland species are useful for conservation because they provide insight into why some species persist despite landscape changes. We therefore investigated the relationship between connectivity, measured as the wetland distance to other wetlands; connectivity quality, implied by wetland distance to roads and forest area within 30, 125, 250, 500 and 1000 m buffer zones around the wetland; and patch size as indicated by wetland size with northern watersnake Nerodia sipedon sipedon abundance. Our results suggest that both upland and wetland characteristics influence the abundance of N. s. sipedon , as wetland size and wetland connectivity to other wetlands were significantly associated with abundance. Abundance was positively correlated with increasing wetland size and wetland connectivity. We were not able to find a significant relationship between abundance and connectivity quality, and wetland distance to road or forest area within 30, 125, 250, 500 and 1000 m buffer zones. We conclude that wetland conservation should focus on wetland complexes as well as individual wetlands. In addition, common wetland species such as the northern watersnake do not appear to be negatively impacted by modifications to nearby terrestrial habitats, such as deforestation and roads, and may benefit from the creation of larger, permanent wetlands.  相似文献   

7.
In Oregon’s Willamette Valley, remaining wetlands are at high risk to loss and degradation from agricultural activity and urbanization. With an increased need for fine temporal-scale monitoring of sensitive wetlands, we used annual Landsat MSS and TM/ETM+ images from 1972 to 2012 to manually interpret loss, gain, and type conversion of wetland area in the floodplain of the Willamette River. By creating Tasseled Cap Brightness, Greenness, and Wetness indices for MSS data that visually match TM/ETM+ Tasseled Cap images, we were able to construct a complete and consistent, annual time series and utilize the entire Landsat archive. With an extended time series we were also able to compare annual trends of net change in wetland area before and after the no-net-loss policy established under Section 404 of the Clean Water Act in 1990 using a Theil-Sen Slope estimate analysis. Vegetated wetlands experienced a 314 ha net loss of wetland area and non-vegetated wetlands experienced a 393 ha net gain, indicating higher functioning wetlands were replaced in area by non-vegetated wetland habitats such as agricultural and quarry ponds. The majority of both gain and loss in the study area was attributed to gains and losses of agricultural land. After 1990 policy implementations, the rate of wetland area lost slowed for some wetland categories and reversed into trends of gain in wetland area for others, perhaps representative of the success of increased regulations. Overall accuracy of land use classification through manual interpretation was at 80 %. This accuracy increased to 91.1 % when land use classes were aggregated to either wetland or upland categories, indicating that our methodology was more accurate at distinguishing between general upland and wetland than finer categorical classes.  相似文献   

8.
Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.  相似文献   

9.
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.  相似文献   

10.
The economic and ecological importance of wetlands is well documented, but there are few studies that have assessed wetland condition and extent for the United States. Many states, including Kentucky, have had no statewide field evaluation of wetlands of any kind. The National Wetland Inventory (NWI) is the largest database for mapped wetlands in the United States and the most comprehensive source of wetland information for Kentucky, but its value for determining wetland condition is limited. Therefore, our objectives were to document wetland extent and condition and assess the agreement between the NWI and field-based wetland characteristics in Kentucky. We conducted field and remote-sensing based assessments of 352 wetlands across the state. NWI-mapped and field-assessed wetlands had similar large-scale patterns; however, for individual wetlands, classification often disagreed. Based on our wetland assessment method, wetlands appear to be of moderate condition, although we found differences among basins, dominant vegetation types, and landscape positions and much variation as many sites scored very low and high. Our findings support previous work showing that rapid assessments are valuable for determining wetland condition for ambient monitoring and other applications. Also, our results provide the foundation for future status and trends studies and suggest an urgent need to update the NWI in Kentucky and elsewhere. We suggest that the NWI could be improved by using newer technology that increases wetland mapping accuracy and including predictions of wetland condition using the enhanced NWI approach.  相似文献   

11.
In West Virginia, USA, there are 24 conservation easement program wetlands enrolled in the Agricultural Conservation Easement Program (ACEP). These wetlands are located on private agricultural land and are passively managed. Due to their location within fragmented agricultural areas, wetlands enrolled in ACEP in West Virginia have the potential to add wetland ecosystem services in areas that are lacking these features. We evaluated ACEP wetlands compared to reference wetlands on public land in West Virginia by using surrounding land cover, vegetative cover, and wetland features and stressors such as the presence or absence of erosion, upland inclusion, algal mats, and evidence of impacts from the surrounding landscape as surrogate measurements of wetland function on 13 ACEP wetlands and 10 reference wetlands. ACEP wetlands had higher percentages of tree coverage and a higher proportion of agricultural land in the areas immediately surrounding the wetland. Reference wetlands had higher percent coverage of emergent vegetation and had a higher proportion of forest in the immediate landscape. Our findings suggest that ACEP wetlands provide valuable early successional and forested wetland cover in a state that is largely forested. Because of this, it is important to maintain and even expand ACEP in West Virginia to continue providing a valuable source of early successional wetland habitat.  相似文献   

12.
We used landscape ecology concepts to test the importance of upland–wetland linkages on the distribution of two common wetland species, the northern watersnake Nerodia sipedon sipedon and midland painted turtle Chrysemys picta marginata , and two rare wetland species, the copper-bellied watersnake Nerodia erythrogaster neglecta and Blanding's turtle Emydoidea blandingii . We tested if connectivity (proximity to other wetlands), connectivity quality (wetland distance to roads and forest area within 30, 125, 250, 500 and 1000 m of the wetland), and patch size (wetland size and shoreline length) affected the distribution of these four species. Our results show that both common species were more likely to occur in larger, less isolated wetlands, but their distribution were not influenced by proximity to roads or the amount of adjacent forest area surrounding the wetland. Both rare species were more likely to occur in wetlands that were farther away from roads and that had more surrounding forest. Proximity to other wetlands was not a significant predictor of either rare species' distribution. Our results suggest that management practices should focus on protecting wetland complexes and maintaining upland–wetland linkages by improving landscape connectivity, increasing forest area surrounding wetlands and reducing road effects.  相似文献   

13.
Though microbial transformations are the primary mechanism of contaminant attenuation in wetlands, much remains to be known about microbial communities in urban wetlands. In this study, the microbial communities from urban wetlands with different runoff regimes (i.e., a contaminated remnant wetland, a constructed wetland, and a remnant wetland) were assessed for their capacity to attenuate and tolerate typical urban runoff pollutants. Results from denaturing gradient gel electrophoresis of 16S rRNA genes showed relatively high similarity in community composition among the wetlands. Community-level physiological profiles had similar results but exhibited within-site variation in both the contaminated remnant and remnant wetlands. All wetland communities were less tolerant to copper than 2,4-dichlorophenoxyacetic acid; however, the contaminated remnant wetland had the highest tolerance. All study wetlands had a limited capacity to biodegrade model chlorinated aromatic compounds (e.g., 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate). Though having different input regimes and contaminant exposure histories, the study wetlands were generally similar with respect to microbial community diversity and function. Additionally, the generally low capacity for these wetlands to biodegrade mobile chlorinated organic contaminants offers preliminary insight into the limited ecosystem services these wetlands may provide in urban environments.  相似文献   

14.
恭映璧  靖磊  彭磊  吴晓芙  胡曰利 《生态学报》2012,32(23):7302-7312
利用GIS技术,对长沙市1955、1972和1990年地形图湿地数据及2007年长沙市湿地资源普查数据进行提取和分析,选取最具代表性的斑块湿地作为研究对象,从时间与空间、动态与静态、规模与填埋等视角,研究50年来城市斑块湿地生态系统各层次要素的时空演变过程和变化规律.结果表明:(1)时间层次上,长沙城市斑块湿地总面积呈现先增后减、总体增加的态势;斑块湿地面积变化幅度不断加大,速率逐步加快;(2)规模层次上,面积在32 hm2规模以下的斑块湿地呈增加态势,32 hm2规模以上斑块湿地呈减少态势;(3)动态空间层次上,被填埋斑块湿地的比例在建成区和郊区呈相反的演变结果;(4)静态空间层次上,斑块湿地密度在建成区范围和郊区范围演变结果相背.研究显示,伴随着城市化进程,不同时间尺度、不同规模尺度、不同空间属性、不同空间状态的城市斑块湿地常常呈现差异很大、甚至是截然相反的演变结果;无论是动态空间还是静态空间,建成区与郊区的空间分界线往往是城市斑块湿地演变态势的分水岭.  相似文献   

15.
With the loss of natural wetlands, artificial wetlands are becoming increasingly important as habitat for waterbirds. We investigated the relationships between waterbirds and various biophysical parameters on artificial wetlands in an Australian urban valley. The densities (birds per hectare) of several species were correlated (mostly positively) with wetland area, and correlations were observed between certain species and other physical and water chemistry variables. Waterbird community structure, based on both abundance (birds per wetland) and density data, was most consistently positively correlated with the relative amount of wetland perimeter that was vegetated, surface area, distance to nearest wetland, public accessibility and shoreline irregularity. We also compared the relative use of the two types of urban wetlands, namely urban lakes and stormwater treatment wetlands, and found for both abundance and density that the number of individuals and species did not vary significantly between wetland types but that significant differences were observed for particular species and feeding guilds, with no species or guild being more abundant or found in greater density on an urban lake than a stormwater treatment wetland. Designing wetlands to provide a diversity of habitat will benefit most species.  相似文献   

16.
In Africa, the direct use of wetlands has long contributed to livelihoods, but use may lead to the degradation of wetlands. In order to better understand how the biophysical features of a wetland influence the sustainability of its use, an investigation was undertaken of the ecological condition and use of three wetlands in the Kasungu District, Malawi, where human pressures on wetlands are high. The first wetland, at the head of the catchment, had sandy soils and a gentle longitudinal slope, the second wetland, lower in the catchment, had clay soils and a steeper longitudinal slope, and the third wetland was intermediate. A framework was applied to score five functional components of ecological condition: hydrology, geomorphology, soil organic matter (SOM) accumulation, nutrient cycling and vegetation composition in terms of human impact, based on pre-defined field indicators. The framework highlighted particular vulnerabilities of individual wetlands in the face of human pressure. Vulnerability varied greatly across the wetlands in terms of: recovery of native vegetation composition following cultivation, geomorphic change through gully erosion and depletion of SOM. The framework is recommended for wider application in Africa as a means of highlighting the specific vulnerabilities of individual wetlands and for the improved focus of organizations which promote the ecologically sustainable use of wetlands.  相似文献   

17.
A common mesofilter approach to conservation of biological diversity and ecosystem function used in agricultural and urban landscapes is maintenance of wetlands and an undisturbed terrestrial buffer surrounding wetlands. Although it is generally accepted that forest buffers protect wetland-associated biological diversity and ecosystem function, the effectiveness and optimal spatial extent of buffers is still an area of debate. During 2007 and 2008 we surveyed amphibians and environmental conditions associated with 54 depression wetlands on the Delmarva Peninsula of Maryland, USA, to examine the role of forest buffers and wetland characteristics in structuring amphibian communities. Forest cover within a 50-m buffer surrounding wetlands was correlated (r = −0.81) with wetland pH but no other wetland characteristics. Wetland pH, canopy cover, hydroperiod, and adjacent forest cover were important predictors of wetland use by individual amphibian species, with many species more likely to occur at wetlands that dried late in the hydrological year and with open canopies. At least one common species preferred circumneutral pH and several restricted-distribution species preferred lower pH (<5). Contrary to expectations, relationships between species occurrence and adjacent forest cover were negative. Our results suggest that current regulations that provide buffers of 30 m or less do not provide adequate protection of wetland water chemistry but that forest encroachment into wetlands may be a threat to the integrity of amphibian communities and should be the target of monitoring, future research, and management efforts. © 2021 The Wildlife Society.  相似文献   

18.
The Great Artesian Basin springs (Australia) are unique groundwater dependent wetland ecosystems of great significance, but are endangered by anthropogenic water extraction from the underlying aquifers. Relationships have been established between the wetland area associated with individual springs and their discharge, providing a potential means of monitoring groundwater flow using measurements of vegetated wetland area. Previous attempts to use this relationship to monitor GAB springs have used aerial photography or high resolution satellite images and gave sporadic temporal information. These “snapshot” studies need to be placed within a longer and more regular context to better assess changes in response to aquifer draw-downs. In this study we test the potential of 8 years of Moderate Resolution Imaging Spectroradiometer Normalised Difference Vegetation Index data as a long-term tracer of the temporal dynamics of wetland vegetation at the Dalhousie Springs Complex of the Great Artesian Basin. NDVI time series were extracted from MODIS images and phenologies of the main wetland vegetation species defined. Photosynthetic activity within wetlands could be discriminated from surrounding land responses in this medium resolution imagery. The study showed good correlation between wetland vegetated area and groundwater flow over the 2002–2010 period, but also the important influence of natural species phenologies, rainfall, and anthropogenic activity on the observed seasonal and inter-annual vegetation dynamics. Declining trends in the extent (km2) of vegetated wetland areas were observed between 2002 and 2009 followed by a return of wetland vegetation since 2010. This study underlines the need to continue long-term medium resolution satellite studies of the GAB to fully understand variability and trends in the spring-fed wetlands. The MODIS record allows a good understanding of variability within the wetlands, and gives a high temporal-frequency context for less frequent higher spatial resolution studies, therefore providing a strong baseline for assessment of future changes.  相似文献   

19.
三江平原典型沼泽湿地螺类组成生态指示   总被引:4,自引:2,他引:2  
螺类作为湿地的重要生物类群,对环境变化响应敏感,这使得螺类成为潜在的环境指示物种。为了研究中国东北沼泽湿地不同类型湿地螺类群落结构的差异以及螺类作为不同类型湿地指示物种的可能,在2014年9月和2015年5月对小叶章沼泽化草甸湿地、臌囊苔草湿地、毛苔草湿地、漂筏苔草湿地共17个采样点进行螺类样品采集。共采集到了螺类8科13属17种4452个。研究表明,螺类以扁卷螺科Planorbidae、椎实螺科Lymnaeidae、膀胱螺科Physidae为主;4种不同类型湿地螺的种类组成不同,这些螺类的种类组成与不同类型湿地的水深、植物类型组成等湿地特征是相对应。螺类的生物多样性指数(ShannonWiener指数和Marglef指数)在不同类型湿地之间也存在一定差异,筛选了指示螺类6种,无褶螺是小叶章沼泽化草甸的指示物种,小土蜗、半球多脉扁螺和虹蛹螺是臌囊苔草湿地的指示物种,琥珀螺是毛苔草湿地的指示物种,平盘螺是漂筏苔草湿地的指示物种,这表明了螺类是沼泽湿地类型的重要指示生物。也为螺类生物多样性资源的保护、恢复和生态评价提供科学依据和资料积累。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号