首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Eastern Mediterranean Sea, deep hypersaline anoxic basins (DHABs) and deep-sea sediment contain anoxic environments where sulfate reduction is an important microbial metabolic process. The objective of this study was to characterize the sulfate-reducing community in the brine and interface of the DHABs L'Atalante and Urania based on a phylogenetic analysis of the dissimilatory sulfite reductase gene (dsrA). Results demonstrated that the sulfate-reducing community was diverse, except for the sulfidogenic brine of the Urania basin. The similarity of the dsrA sequences between different environments was very low demonstrating that each environment had a unique sulfate-reducing community. Sequences had 67.6-93.3% similarity to dsrA sequences from GenBank database and were mostly related to the delta-proteobacteria. Each environment was dominated by a different family within the delta-proteobacteria except for the Urania interface, which was dominated by sequences related to the Gram-positive Peptococcaceae. We conclude that sulfate-reducing communities inhabiting the L'Atalante and Urania basins are highly diverse with low similarities to each other and contain a sulfate-reducing species composition that is very different from sulfate-reducing species compositions in previously studied ecosystems.  相似文献   

2.
We examined changes in the distribution of 9 native and 18 introduced freshwater fishes in the south-eastern Pyrenees watershed, Iberian Peninsula, using data from 1996, 1984–1988 and historical information. This region suffers many modifications to its freshwater ecosystems that are linked to human activity in the Mediterranean regions. Fish communities, stream physical habitat and environmental degradation were assessed at 168 sites from 11 basins in 1996. Seven native species (78%) showed decline from previous data, one of which became extirpated in the first half of the 20th century. On the other hand, introduced species are expanding. As a consequence, intact native communities are increasingly rare, declining from presence in 22% of river courses in 1984–1988 to 15% in 1996. The most typical community type is a mixture of native and introduced species occupying 30% of river courses. Stream degradation seems to be the main cause of this process because fish communities differed between degraded streams and streams suffering less impact. A principal component analysis showed that water pollution and modifications to the habitat were the two anthropogenic factors that accounted for most changes in the fish community integrity. Habitat alteration, primarily through construction of dams and water diversions, has fragmented habitats and isolated native fish communities in headwater streams. Current protection measures do not offer effective conservation of threatened species and communities. A global conservation and restoration programme from an ecosystem-based approach is essential to reverse the trend affecting native freshwater fishes in this Mediterranean region.  相似文献   

3.
为了解阿勒泰地区额尔齐斯河和乌伦古河流域的鱼类多样性现状和历史演变, 本研究于2013-2016年间在该流域的鱼类多样性进行了连续调查, 并结合历史资料和标本, 以Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数分析评估了流域内鱼类的多样性水平和时空变化。该流域历史上分布有土著鱼类23种, 当前记录到19种, 流域内还有外来鱼类15种。阿勒泰鱼类的区系组成以鲤科种类为主, 其中特有和珍稀濒危物种占比高, 具有重要的保护价值。多样性指数计算结果显示, 2013-2016年鱼类多样性情况整体稳定, 额尔齐斯河鱼类物种数多于乌伦古河。研究还基于鱼类生物完整性指数(Fish Index of Biological Integrity, F-IBI)对34个采集点的河流健康状况进行了评价, 结果显示额尔齐斯河流域大多数调查点的健康状况处于“亚健康”或“一般”水平, 乌伦古河流域多数调查点的健康状况处于“健康”水平。水利工程、外来物种、过度捕捞是影响阿勒泰地区鱼类多样性的重要因素。未来应通过水利工程的联合调度、下泄合理生态流量、布设鱼类通道、规范养殖渔业、严控外来物种、本地土著鱼类的人工增殖放流, 以及合理的就地保护措施对阿勒泰地区的鱼类多样性加以保护, 提升水体健康程度。  相似文献   

4.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

5.
1. Ecosystems can enhance the biodiversity of adjacent ecosystems through subsidies of prey, nutrients and also habitat. For example, trees can fall into aquatic ecosystems and act as a subsidy that increases aquatic habitat heterogeneity. This habitat subsidy is vulnerable in lakes where anthropogenic development of shorelines coincides with a thinning of riparian forests and the removal of these dead trees (termed coarse woody debris: CWD). How the disruption of this subsidy affects lake ecosystems is not well understood.
2. We performed a whole ecosystem experiment on Little Rock Lake, a small (18 ha), undeveloped, and unfished lake in Vilas County, WI, U.S.A., that is divided into two similar-sized basins by a double poly-vinyl chloride curtain that prevents both fish and water exchange between basins. In 2002, we removed about 70% of the littoral CWD in the treatment basin, while the reference basin was left unaltered. We tested for changes in both fish and benthic macroinvertebrate community composition in the two years following the CWD reduction.
3. Yellow perch ( Perca flavescens ) was the most abundant fish species in the lake prior to our experiment, but declined to very low densities in the treatment basin after manipulation. We found no evidence of an effect on macroinvertebrates – the treatment basin's macroinvertebrate community composition, diversity and density did not change relative to the reference basin.
4. Our results indicate that different trophic groups may have differential responses to the loss of a habitat subsidy, even if anthropogenic effects on that subsidy are severe. In the case of Little Rock Lake, fish community responses were evident on a short-time scale, whereas the macroinvertebrate community did not rapidly change following CWD reduction.  相似文献   

6.
Freshwater ecosystems are among the most endangered ecosystem in the world. Understanding how human activities affect these ecosystems requires disentangling and quantifying the contribution of the factors driving community assembly. While it has been largely studied in temperate freshwaters, tropical ecosystems remain challenging to study due to the high species richness and the lack of knowledge on species distribution. Here, the use of eDNA-based fish inventories combined to a community-level modelling approach allowed depicting of assembly rules and quantifying the relative contribution of geographic, environmental and anthropic factors to fish assembly. We then used the model predictions to map spatial biodiversity and assess the representativity of sites surveyed in French Guiana within the EU Water Framework Directive (WFD) and highlighted areas that should host unique freshwater fish assemblages. We demonstrated a mismatch between the taxonomic and functional diversity. Taxonomic assemblages between but also within basins were mainly the results of dispersal limitation resulting from basin isolation and natural river barriers. Contrastingly, functional assemblages were ruled by environmental and anthropic factors. The regional mapping of fish diversity indicated that the sites surveyed within the EU WFD had a better representativity of the regional functional diversity than taxonomic diversity. Importantly, we also showed that the assemblages expected to be the most altered by anthropic factors were the most poorly represented in terms of functional diversity in the surveyed sites. The predictions of unique functional and taxonomic assemblages could, therefore, guide the establishment of new survey sites to increase fish diversity representativity and improve this monitoring program.  相似文献   

7.
S. Perea  I. Doadrio 《Molecular ecology》2015,24(14):3706-3722
The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid‐Pliocene. Freshwater species in Mediterranean‐type climates will likely constitute genetically well‐differentiated populations, to varying extents depending on basin size, as a consequence of fragmentation resulting from drought/flood cycles. We developed an integrative framework to study the spatial patterns in genetic diversity, demographic trends, habitat suitability modelling and landscape genetics, to evaluate the evolutionary response of Mediterranean‐type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean‐type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred models support the significant contribution of precipitation and temperature to S. valentinus habitat suitability and allow recognizing areas of habitat stability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the preservation of freshwater species inhabiting seasonally fluctuating river systems.  相似文献   

8.
While the effects of lake restoration by fish manipulation are well-studied in the temperate zone, comparatively little information is available on this issue from tropical lakes. It may be expected that fish removal leads to faster recovery of the fish stock here than in temperate lakes due to more frequent and earlier reproduction, which may, in turn, delay positive effects of the restoration. We studied the community composition, feeding type and abundance of fish in three basins of a tropical shallow lake: one unrestored basin (UR) and two basins restored by fish manipulation and transplantation of submerged macrophytes. While omni-benthivorous fish dominated the biomass in the restored basins 3 and 5 years after restoration, planktivores were most abundant in the UR, although total fish biomass remained similar. One-way analyses of similarities based on fish species presence/absence, abundance and biomass data revealed significant differences in fish community composition among the restored basins and UR, and redundancy analyses further indicated that submerged macrophytes were a key driver behind this difference. Our results indicate that active implantation of submerged macrophytes to stabilise the fish community is a tool to consider when planning lake restoration by biomanipulation in the tropics.  相似文献   

9.
Neotropical freshwater ecosystems are experiencing a great expansion in the number of invasive species, which is especially alarming since this region harbours 30% of the world’s fish biodiversity with high levels of endemism. We aimed to evaluate the main predictors of peacock basses (Cichla spp.) abundance outside their native range, which are the Amazon and Tocantins-Araguaia river basins. We used multivariate ordination techniques and multimodel inference to analyse peacock basses abundance in twelve reservoirs of the Paraíba do Sul river basin, southeastern Brazil. Interestingly, reservoirs at higher (southernmost) latitudes, located in more populated areas, had higher water temperature and lower turbidity, due to increased water residence time, and these three variables were also positively correlated with abundance of this warm-water invasive fish. Habitat structure was less important in explaining peacock basses abundance, which was not significantly related to biotic factors (fish species richness and time since peacock basses introduction). We hypothesize that the observed effects of reservoir management on limnological features and peacock bass abundance, particularly water residence time (as a mediator of temperature and turbidity), may apply to other Neotropical basins and could influence the impact of this invader.  相似文献   

10.
Aim The level of imperilment of mediterranean freshwater fish is among the highest recorded for any group of organisms evaluated to date. Here, we describe the geographical patterns in the incidence of threats affecting mediterranean freshwater fish and test whether the effects of specific threats are spatially related to the degree of imperilment of fish faunas. Location The Mediterranean Basin Biome. Methods From the IUCN Red List, we recorded the six main threats to 232 endemic freshwater fish species. We used data on fish distributions from IUCN to characterize the spatial patterns in the incidence of threats (as percentage of species affected) through multivariate statistics. We studied the relationships between threat incidence and two estimators of imperilment (proportion of species threatened and an index of extinction risk) at two spatial scales (10 × 10 km and basins) using partial least squares regressions (PLSR) that incorporated the effects of species richness and mean range size. Results The main axis of variation in the incidence of threats to freshwater fish split areas mainly affected by invasive species from those areas where species are threatened by pollution and agriculture. Wherever invasive species and water extraction were predominant threats, fish assemblages consistently tended to be more imperilled. Main conclusions As far as we know, this is the first large‐scale analysis on the spatial relationships between the incidence of threats and level of imperilment of any taxonomic group. Our results highlight the primary role of invasive species and water extraction as drivers of native fish declines in the Mediterranean Basin. Large‐scale patterns described here should be generated by local‐scale impacts of both threats on fish biodiversity, widely reported in Mediterranean areas. Because all the species under concern are endemic, control of invasive species and reducing overexploitation of freshwater resources should be conservation priorities for mediterranean freshwater systems.  相似文献   

11.
This study investigated the relationships between fish condition and environmental variables in Barbus sclateri from semi-arid freshwater ecosystems in the south-eastern Iberian Peninsula. Two main habitats were studied: semi-arid streams characterized by strong seasonal fluctuations in flow level (droughts and floods) and reservoirs (artificial ecosystems characterised by waters of high conductivity). The mass–length relationships were used to test differences in fish condition between nine stream populations and five reservoir populations of B. sclateri from the Segura River basin. The relationships between seven ecosystem variables (conductivity, oxygen concentration, water temperature, pH, seasonal water flow, submerged vegetation and sub-basin location) and fish condition were analysed. The ecological variables that accounted for most of the variation in fish condition were seasonal water fluctuation and water conductivity. The condition of B. sclateri populations may be a good indicator of fish habitat quality in Mediterranean semi-arid freshwater ecosystems and should be considered when such populations are subjected to sports fishing regulations, recovery plans or any other management programme.  相似文献   

12.
Classification and ordination methods used to examine the internal complexity of the Mediterranean Tagus River catchment based on fish distribution revealed that it is not a homogeneous biogeographical unit. The indigenous fishes analyzed in this study are distributed through the basin forming geographical communities (chorotypes), some of which are associated with environmental factors like river morphology, water quality or geographical location. Nevertheless, 40% of the variation in species occurrence remains unexplained by either environmental or geographical variables, suggesting that historical factors may influence the freshwater fish distribution patterns. Three main biogeographical areas, delimited by significant boundaries, were identified. Two of them are identified as the upper and the middle-lower basins of the Tagus River catchment; the third corresponds to the Alagón River and seems to be linked to historical factors of the catchment.  相似文献   

13.
Due to global climate change–induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species’ distributions. This is particularly important in connectivity-limited ecosystems, such as freshwater ecosystems, where increased human translocation is creating species associations over previously unseen environmental gradients. Here, we use a large-scale presence–absence dataset of freshwater fish from lakes across the Fennoscandian region in a Joint Species Distribution Model, to measure the effect of temperature on species associations. We identified a trend of negative associations between species tolerant of cold waters and those tolerant of warmer waters, as well as positive associations between several more warm-tolerant species, with these associations often shifting depending on local temperatures. Our results confirm that freshwater ecosystems can expect to see a large-scale shift towards communities dominated by more warm-tolerant species. While there remains much work to be done to predict exactly where and when local extinctions may take place, the model implemented provides a starting-point for the exploration of climate-driven community trends. This approach is especially informative in regards to determining which species associations are most central in shaping future community composition, and which areas are most vulnerable to local extinctions.  相似文献   

14.
Invasive species provide unique and useful systems by which to examine various ecological and evolutionary issues, both in terms of the effects on native environments and the subsequent evolutionary impacts. While biological invasions are an increasing agent of change in aquatic systems, alien species also act as vectors for new parasites and diseases. To date, colonizations by hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways and may have unpredictable negative consequences. Fish are widely introduced worldwide and are convenient organisms to study parasites and diseases. We report a global overview of fish invasions with associated parasitological data. Data available on marine and freshwater are in sharp contrast. While parasites and diseases of inland freshwater fish, ornamental, reared and anadromous fish species are well documented, leading to the emergence of several evolutionary hypotheses in freshwater ecosystems during the last decade, the transfer of such organisms are virtually unexplored in marine ecosystems. The paucity of information available on the parasites of introduced marine fish reflects the paucity of information currently available on parasites of non-indigenous species in marine ecosystems. However, such information is crucial as it can allow estimations of the extent to which freshwater epidemiology/evolution can be directly transferred to marine systems, providing guidelines for adapting freshwater control to the marine environment.  相似文献   

15.
1. Understanding factors that regulate the assembly of communities is a main focus of ecology. Human‐engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2. We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3. We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4. The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long‐term dynamics of impounded river networks.  相似文献   

16.
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.  相似文献   

17.
There is growing interest in large-scale approaches to ecology, for both plants and animals. In particular, macroecological studies enable examination of the patterns and determinants of species richness of a variety of groups of organism throughout the world, which might have important implications for prediction and mitigation of the consequences of global change. Here, we provide richness data for freshwater fishes, which, with more than 13,000 described species, comprise a quarter of all vertebrate species. We conducted an extensive literature survey of native, non-native (exotic), and endemic freshwater fish species richness. The resulting database, called Fish-SPRICH, contains data from more than 400 bibliographic sources including published papers, books, and grey literature sources. Fish-SPRICH contains richness values at the river basin grain for 1,054 river basins covering more than 80% of the earth’s continental surface. This database is currently the most comprehensive global database of native, non-native and endemic freshwater fish richness available at the river basin grain.  相似文献   

18.
1. River flow alterations due to climate change and increasing water usage affect freshwater biodiversity including fish species richness. Here, we statistically explored the relationships of fish species richness to 14 ecologically relevant flow metrics as well as basin area and latitude in 72 rivers worldwide. 2. The statistical models best supported by the data included three variables with positive coefficients (mean river discharge, basin area and the maximum proportion of no‐flooding period) and three variables with negative coefficients (latitude, coefficients of variation in the frequency of low flow and the Julian date of annual minimum flow). 3. The model outputs have provided the first empirical indication that specific low‐ and high‐flow characteristics may be important in explaining variations in basin‐scale fish species richness. Our findings can be useful in identifying high‐risk basins for conservation of fish species diversity. 4. The results not only support the adoption of mean discharge as a predictor, but also suggest the importance of basin area in predicting basin‐scale fish species richness around the world.  相似文献   

19.
The ubiquitous alpha-proteobacteria of the order “Candidatus Pelagibacterales” (SAR11) are highly abundant in aquatic environments, and among them, members of the monophyletic lineage LD12 (also known as SAR11 clade IIIb) are specifically found in lacustrine ecosystems. Clade IIIb bacteria are some of the most prominent members of freshwater environments, but little is known about their biology due to the lack of genome representatives. Only recently, the first non-marine isolate was cultured and described as “Candidatus Fonsibacter ubiquis”. Here, we expand the collection of freshwater IIIb representatives and describe a new IIIb species of the genus “Ca. Fonsibacter”. Specifically, we assembled a collection of 67 freshwater metagenomic datasets from the interconnected lakes of the Chattahoochee River basin (GA, USA) and obtained nearly complete metagenome-assembled genomes (MAGs) representing 5 distinct IIIb subclades, roughly equivalent to species based on genomic standards, including the previously described “Ca. F. ubiquis”. Genomic comparisons between members of the IIIb species revealed high similarity in gene content. However, when comparing their abundance profiles in the Chattahoochee basin and various aquatic environments, differences in temporal and spatial distributions among the distinct species were observed implying niche differentiation might be underlying the coexistence of the highly functionally similar representatives. The name Ca. Fonsibacter lacus sp. nov. is proposed for the most abundant and widespread species in the Chattahoochee River basin and various freshwater ecosystems.  相似文献   

20.
We classified the main Iberian river basins based on the presence and absence of freshwater fishes and amphibians. For both taxonomic groups we analysed three data sets; 1) endemic species only, to search for biotic boundaries related to historical events, 2) indigenous species, which include endemic ones, to search for biotic boundaries related to ecological factors, 3) indigenous and well-established introduced species, to assess the influence of man in the current biogeographical patterns of fishes and amphibians. We used both phenetic and cladistic methods, followed by a consensus analysis to provide an overall biogeographical pattern. Based on all fish distributions, the Iberian Peninsula is divided into three biogeographical regions: Cantabrian, Atlantic and Mediterranean, No boundary existed between the Cantabrian and Atlantic regions when only indigenous fish species were considered. This suggests that this boundary has been induced by man, probably through the differential introduction of fish species into reservoirs at one or other side of the boundary. Run-off and the size of the river basins are the environmental factors that distinguished the Atlantic and Mediterranean regions. However, regionalization based only on endemic freshwater fishes showed a latitudinal pattern that agrees with the paleogeographic events of the Upper Oligocene-Lower Miocene period. By contrast, one northern and one southern region were distinguished based on all amphibian distributions and on indigenous amphibians only, which suggests that human activity has not significantly affected the overall biogeographical pattern of amphibians in the Iberian Peninsula. Interannual predictability of precipitation best accounts for this regionalization. Based on endemic amphibians, the Iberian Peninsula is divided into three regions that closely resemble the three separate land areas of the Upper Eocene-Lower Oligocene period. The consensus between the biogeographical regions based on fishes and amphibians yields five pairs of basins. Geological origin of the basins seems to better explain the consensus between the biogeographical patterns of fishes and amphibians, whereas ecological factors probably contribute to the differences between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号