首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several different cytokines and growth factors secreted by mesenchymal stem cells (MSCs) have been hypothesized to play a role in breast cancer progression. By using a small panel of breast cancer cell lines (MCF‐7, T47D, and SK‐Br‐3 cells), we analyzed the role of interleukin‐6 (IL‐6) and vascular endothelial growth factor A (VEGF) in the cross‐talk between MSCs and breast cancer cells. We performed migration assays in which breast cancer cells were allowed to migrate in response to conditioned medium from MSCs (MSCs‐CM), in absence or in presence of the anti‐VEGF antibody bevacizumab or an anti‐IL‐6 antibody, alone or in combination. We found that anti‐VEGF and anti‐IL‐6 antibodies inhibited the migration of breast cancer cells and that the combination had an higher inhibitory effect. We next evaluated the effects of recombinant VEGF and IL‐6 proteins on breast cancer cell growth and migration. IL‐6 and VEGF had not significant effects on the proliferation of breast carcinoma cells. In contrast, both VEGF and IL‐6 significantly increased the ability to migrate of MCF‐7, T47D and SK‐Br‐3 cells, with the combination showing a greater effect as compared with treatment with a single protein. The combination of VEGF and IL‐6 produced in breast cancer cells a more significant and more persistent activation of MAPK, AKT, and p38MAPK intracellular signaling pathways. These results suggest that MSC‐secreted IL‐6 and VEGF may act as paracrine factors to sustain breast cancer cell migration. J. Cell. Biochem. 113: 3363–3370, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Mice or humans with photoreceptor degenerations experience permeability and dropout of retinal capillaries. Loss of photoreceptors results in decreased oxygen usage and thinning of the retina with increased oxygen delivery to the inner retina. To investigate the possibility that increased tissue oxygen plays a role in the vascular damage, we exposed adult mice to hyperoxia, which also increases oxygen in the retina. After 1, 2, or 3 weeks of hyperoxia, there was a statistically significant decrease in retinal vascular density that was not reversible, and endothelial cell apoptosis was demonstrated by TUNEL staining. Mice exposed to hyperoxia and mice with photoreceptor degeneration both showed decreased expression of VEGF in the retina. After complete or near-complete degeneration of photoreceptors, there was increased expression of VEGF in RPE cells, which may explain the association of photoreceptor degeneration and neovascularization in or around the RPE. Increased expression of VEGF in photoreceptors of transgenic mice failed to prevent hyperoxia-induced retinal capillary dropout. These data suggest that increased oxygen in the retina, either by increased inspired oxygen or by photoreceptor degeneration, results in endothelial cell death and dropout of capillaries. Decreased expression of VEGF may be a contributing factor, but the situation may be more complicated for mature retinal vessels than it is for immature vessels, because VEGF replacement does not rescue mature retinal vessels, suggesting that other factors may also be involved.  相似文献   

3.
4.
5.
Mesenchymal stromal/stem cells (MSC) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSC) but are capable of differentiating into various cell types of mesenchymal origin, such as bone, fat and cartilage. In vitro and in vivo data suggest that MSC have low inherent immunogenicity, modulate/suppress immunologic responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biologic properties. MSC derived from BM are being evaluated for a wide range of clinical applications, including disorders as diverse as myocardial infarction and newly diagnosed diabetes mellitus type 1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft-versus-host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSC, combined with their intriguing immunomodulatory properties and their impressive record of safety in a wide variety of clinical trials, make these cells promising candidates for further investigation.  相似文献   

6.

Background

Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.

Methods

Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.

Results

Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.

Conclusions

VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.  相似文献   

7.
Vascular endothelial growth factor (VEGF) receptor blockade impairs lung growth and decreases nitric oxide (NO) production in neonatal rat lungs. Inhaled NO (iNO) treatment after VEGF inhibition preserves lung growth in infant rats by unknown mechanisms. We hypothesized that neonatal VEGF inhibition disrupts lung growth by causing apoptosis in endothelial cells, which is attenuated by early iNO treatment. Three-day-old rats received SU-5416, an inhibitor of VEGF receptor, or its vehicle and were raised in room air with or without iNO (10 ppm). SU-5416 reduced alveolar counts and lung vessel density by 28% (P < 0.005) and 21% (P < 0.05), respectively, as early as at 7 days of age. SU-5416 increased lung active caspase-3 protein by 60% at 5 days of age (P < 0.05), which subsided by 7 days of age, suggesting a transient increase in lung apoptosis after VEGF blockade. Apoptosis primarily colocalized to lung vascular endothelial cells, and SU-5416 increased endothelial cell apoptotic index by eightfold at 5 days of age (P <0.0001). iNO treatment after SU-5416 prevented the increases in lung active caspase-3 and in endothelial cell apoptotic index. There was no difference in alveolar type 2 cell number between control and SU-5416-treated rats. We conclude that neonatal VEGF receptor inhibition causes transient apoptosis in pulmonary endothelium, which is followed by persistently impaired lung growth. Early iNO treatment after VEGF inhibition reduces endothelial cell apoptosis in neonatal lungs. We speculate that enhancing endothelial cell survival after lung injury may preserve neonatal lung growth in bronchopulmonary dysplasia.  相似文献   

8.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

9.
Recent studies implicate hyperglycemia as a cause of vascular complications in diabetes. Our study confirmed that high concentration of glucose (30 mM) induces apoptosis in cultures of human umbilical vein endothelial cells. After 5 days of culture TUNEL positive cells in high concentration of glucose were nearly 63% higher when compared to normal concentration of glucose (5 mM). Transfection of pcDNA3-rat alphaB-crystallin into these cells inhibited high glucose-induced apoptosis by approximately 36%, such an effect was not observed when cells were transfected with an empty vector. AlphaB-crystallin transfection inhibited by about 35% of high glucose induced activation of caspase-3. High concentration of glucose enhanced formation of reactive oxygen species (ROS) in these cells but this was significantly (p < 0.001) curtailed by transfection of alphaB-crystallin. Results of our study indicate that alphaB-crystallin effectively inhibits both ROS formation and apoptosis in cultured vascular endothelial cells and provide a basis for future therapeutic interventions in diabetic vascular complications.  相似文献   

10.
Epidermal growth factor increases lung liquid clearance in rat lungs   总被引:9,自引:0,他引:9  
Epidermal growthfactor (EGF) has been reported to stimulate the proliferation ofepithelial cells and increase Na+flux andNa+-K+-ATPasefunction in alveolar epithelial cell monolayers. Increases inNa+-K+-ATPasein alveolar type II cells (AT2) have been associated with increasedactive Na+ transport and lungedema clearance across the rat alveolar epithelium in a model ofproliferative lung injury. Thus we tested whether administration ofaerosolized EGF to rat lungs would increase activeNa+ transport and lung liquidclearance. Sixteen adult Sprague-Dawley male rats were randomized tothree groups. To a group of six rats, an aerosol generated from 20 µgof EGF in saline was delivered to the lungs, to a second group of fiverats only aerosolized saline was delivered, and a third group of fiverats without treatment served as the control. Forty-eight hourspostaerosolization of rat lungs with EGF there was an ~40% increasein active Na+ transport and lungliquid clearance compared with control rats, in the absence of changesin22Na+,[3H]mannitol, andalbumin permeabilities. TheNa+-K+-ATPaseactivity in AT2 cells harvested from these lungs was increased in ratsthat received aerosolized EGF compared with AT2 cells from both controlrats and rats receiving aerosolized saline. These results support thehypothesis that in vivo delivery of EGF aerosols upregulates alveolarepithelialNa+-K+-ATPaseand increases lung liquid clearance in rats.

  相似文献   

11.
12(R)-Hydroxy-5,8,14-eicosatrienoic acid (HETrE) is a potent inflammatory and angiogenic eicosanoid in ocular and dermal tissues. Previous studies suggested that 12(R)-HETrE activates microvessel endothelial cells via a high affinity binding site; however, the cellular mechanisms underlying 12(R)-HETrE angiogenic activity are unexplored. Because the synthesis of 12(R)-HETrE is induced in response to hypoxic injury, we examined its interactions with vascular endothelial growth factor (VEGF) in rabbit limbal microvessel endothelial cells. Addition of 12(R)-HETrE (0.1 nm) to the cells increased VEGF mRNA levels with maximum 5-fold increase at 45 min. The increase in VEGF mRNA was followed by an increase in immunoreactive VEGF protein. 12(R)-HETrE (0.1 nm) rapidly activated the extracellular signal-regulated kinases (ERKs) ERK1 and ERK2. Moreover, preincubation of cells with PD98059, a selective inhibitor of MEK-1, inhibited 12(R)-HETrE-induced VEGF mRNA. Addition of VEGF antibody to cells grown in Matrigel-coated culture plates inhibited 12(R)-HETrE-induced capillary tube-like formation, suggesting that VEGF mediates, at least in part, the angiogenic response to 12(R)-HETrE. The results indicate that in microvessel endothelial cells, 12(R)-HETrE induces VEGF expression via activation of ERK1/2 and that VEGF mediates, at least in part, the angiogenic activity of 12(R)-HETrE. Given the fact that both VEGF and 12(R)-HETrE are produced in the cornea after hypoxic injury, their interaction may be an important determinant in the development of neovascularized tissues.  相似文献   

12.
目的 探讨成人骨髓间充质干细胞(bone marrow mesenchymal stem cells BMSCs)在体外缺氧环境下对人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)增殖和血管形成能力的影响及其可能机制.方法密度梯度离心法收集分离成人骨髓血MSCs并进行体外培养扩增,传代至4代进行实验,流式细胞仪鉴定MSCs表面标志.BMSCs缺氧培养0h(对照组)、12h、24h和48h后,RT-PCR检测SDF-1和VEGF基因表达,ELISA法检测细胞上清液中SDF-1和VEGF蛋白含量.HUVECs传代培养后分成三组进行实验:对照组、BMSCsCMN-HUVECs组,BMSCsCMH-HUVECs组,MTT检测三组细胞增殖能力,体外血管形成实验分析三组细胞在Matrigel上管腔样结构形成情况.结果 (1) BMSCs呈旋涡状长梭形即纤维母细胞样生长;(2) 人BMSCs阳性表达CD29、CD44和CD90,而CD34、CD45和CD106为阴性;(3) BMSCs缺氧培养后SDF-1和VEGF在mRNA和蛋白水平表达均较常氧培养显著增高(P均<0.05);(4) BMSCsCMH明显提高HUVECs增殖能力(P<0.05),显著增加HUVECs在Matrigel上形成管腔样结构的能力(P<0.05).结论 人BMSCs在缺氧环境下通过旁分泌SDF-1和VEGF提高血管内皮细胞增殖和管腔样结构形成能力,促进血管新生.  相似文献   

13.
14.
Mesenchymal stem cells (MSCs) transplantation has been proposed as a promising means for ischemic heart disease. Vascular endothelial growth factor (VEGF) has been demonstrated to play an important role in MSCs transplantation. Angiotensin II (AngII), the most important effector peptide of the renin-angiotensin system (RAS), is also an angiogenesis factor. However, the effects of AngII on VEGF expression in MSCs and the related signaling cascades were unknown. In this experiment, we first demonstrated that incubation of MSCs with AngII-induced a rapid increase in VEGF mRNA expression and protein synthesis. However, these effects were abolished by prior treatment with AngII type 1 (AT1) receptor antagonist losartan while not AngII type 2 (AT2) receptor antagonist PD123319. The addition of either the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 or Akt inhibitor LY294002 also led to a marked inhibition of the AngII-induced VEGF mRNA and protein production. Taken together, these results suggested that AngII stimulated the synthesis of VEGF in MSCs through ERK1/2 and Akt pathway via AT1 receptor.  相似文献   

15.
Hyperhomocysteinemia is associated with an increase in the incidence of vascular diseases, including retinal vascular diseases. We examined the effects of high plasma levels of homocysteine on retinal glial cells and vascular endothelial growth factor (VEGF) expression. Male Sprague-Dawley rats were fed either a 3.0 g/kg homocystine diet or a control diet for 2 week. The homocystine-diet group had higher plasma levels of homocysteine and thiobarbituric acid reactive substances (TBARSs) and lower plasma levels of folate, retinol, alpha-tocopherol, and retinal expression of CuZn superoxide dismutase (SOD) than the controls. The rats fed the homocystine-diet showed an increase in vimentin, glial fibrillary acidic protein (GFAP), and VEGF immunoreactivity in the retina as compared to the controls. The increase in vimentin immunoreactivity in the hyperhomocysteinemic rats was correlated with changes in GFAP immunoreactivity in astrocytes within the ganglion cell layer. We found for the first time that short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases VEGF expression in the retina.  相似文献   

16.
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin’s actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin’s actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin’s effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.  相似文献   

17.
Bone marrow-derived mesenchymal stem cells (MSCs) are being explored for clinical applications, and genetic engineering represents a useful strategy for boosting the therapeutic potency of MSCs. Vascular endothelial growth factor (VEGF)-based gene therapy protocols have been used to treat tissue ischemia, and a combined VEGF/MSC therapeutics is appealing due to their synergistic paracrine actions. However, multiple VEGF splice variants exhibit differences in their mitogenicity, chemotactic efficacy, receptor interaction, and tissue distribution, and the differential regulatory effects of multiple VEGF isoforms on the function of MSCs have not been characterized. We expressed three rat VEGF-A splice variants VEGF120, 164, and 188 in MSCs using adenoviral vectors, and analyzed their effects on MSC proliferation, differentiation, survival, and trophic factor production. The three VEGF splice variants exert common and differential effects on MSCs. All three expressed VEGFs are potent in promoting MSC proliferation. VEGF120 and 188 are more effective in amplifying expression of multiple growth factor and cytokine genes. VEGF164 on the other hand is more potent in promoting expression of genes associated with MSC remodeling and endothelial differentiation. The longer isoform VEGF188, which is preferentially retained by proteoglycans, facilitates bone morphogenetic protein-7 (BMP7)-mediated MSC osteogenesis. Under serum starvation condition, virally expressed VEGF188 preferentially enhances serum withdrawal-mediated cell death involving nitric oxide production. This work indicates that seeking the best possible match of an optimal VEGF isoform to a given disease setting can generate maximum therapeutic benefits and minimize unwanted side effects in combined stem cell and gene therapy.  相似文献   

18.
Angiogenesis is essential for transplantation of mesenchymal stem cells (MSCs). Vascular endothelial growth factor (VEGF) is one of the most potent angiogenic factors identified to date. Elevated VEGF levels in MSCs correlate with the potential of MSCs transplantation. As an indirect angiogenic agent, transforming growth factor-β1 (TGF-β1) plays a pivotal role in the regulation of vasculogenesis and angiogenesis. However, the effect of TGF-β1 on VEGF synthesis in MSCs is still unknown. Besides, the intracellular signaling mechanism by which TGF-β1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of MSCs to TGF-β1 stimulated the synthesis of VEGF. Meanwhile, TGF-β1 stimulated the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, Ly 294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K)/Akt significantly attenuated the VEGF synthesis stimulated by TGF-β1. Additionally, U0126, a specific inhibitor of ERK1/2, also significantly attenuated the TGF-β1-stimulated VEGF synthesis. These results indicated that TGF-β1 enhanced VEGF synthesis in MSCs, and the Akt and ERK1/2 activation were involved in this process.  相似文献   

19.
The role of soluble factors (including angiogenic cytokines) and extracellular matrix components in the regulation of angiogenesis is clearly established. However, the interrelationship between these factors and perivascular mesenchymal cells is not well understood. Here we have used a three-dimensional collagen gel coculture system to assess the effect of mesenchymal C3H10T1/2 cells on vascular endothelial growth factor-A (VEGF-A)- and fibroblast growth factor-2 (FGF-2)-induced angiogenesis in vitro. We found that coculture markedly potentiated the angiogenic activity of VEGF-A, irrespective of whether or not direct cell-to-cell contact occurred. In contrast, under conditions in which cell-to-cell contact was possible, FGF-2-induced angiogenesis was inhibited by cocultured 10T1/2 cells; this effect was not seen when cell-to-cell contact was prevented. Attempts to identify the molecules responsible for this effect allowed us to exclude FGF-2, transforming growth factorbeta1, platelet derived growth factor-BB, angiopoietin-1, and NO as possible mediators of the potentiating effect of coculture on VEGF-A-induced invasion. In the living organism, angiogenesis occurs in a three-dimensional microenvironment. Contrary to the inhibitory effect of 10T1/2 cells previously reported by others in two-dimensional cultures, our data demonstrate that the paracrine interaction between endothelial and mesenchymal cells potentiates angiogenesis in vitro and that this is cytokine-specific, i.e., it occurs with VEGF-A but not with FGF-2.  相似文献   

20.
Previous work has shown that heterozygocity for a null mutation of the VEGF-A gene, resulting in a 50% reduction in VEGF-A expression, is embryonic lethal at embroyonic day (E) 9.5 in mice. We now show that two- to threefold overexpression of VEGF-A from its endogenous locus results in severe abnormalities in heart development and embryonic lethality at E12.5-E14. The mutant embryos displayed an attenuated compact layer of myocardium, overproduction of trabeculae, defective ventricular septation and abnormalities in remodeling of the outflow track of the heart. In addition, aberrant coronary development was characterized by formation of oversized epicardial vessels, apparently through vasculogenesis. We infer that embryonic survival requires a narrow window of VEGF-A expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号