首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Crab spiders (Thomisidae) indirectly affect insect flower‐visitor and flowering plant interactions by consuming and altering the behaviour of insects. 2. Although one expects insect flower‐visitors to avoid crab spiders actively, some crab spider species are known to attract flower‐visitors. Crab spiders may use UV signalling to lure potential prey to the flowers they occupy. 3. In the present study, a field experiment was conducted to examine the effects of crab spiders occupying three prairie plant species for the insect flower‐visitor community. Pollinating insects were significantly attracted to inflorescences with crab spiders compared to inflorescences without crab spiders for two plant species, and herbivorous insects were attracted to inflorescences with crab spiders for one of these plant species. The two flowering plant species with increased pollinator visitation showed increased seed weights for plants with crab spiders, indicating crab spider presence indirectly increased pollination. 4. To test the UV signalling hypothesis, inflorescences with crab spiders of one plant species were observed under both a UV‐blocking plastic and a clear plastic control. Contrary to our prediction, flower‐visitors were not more likely to land on inflorescences under the clear plastic; the UV signalling hypothesis was not supported. Other unknown explanations underlie prey attraction to inflorescences with crab spiders.  相似文献   

2.
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success.  相似文献   

3.
1. The ability of pollinating insects to discover and evade their predators can affect plant–pollinator mutualisms and have cascading ecosystem effects. Pollinators will avoid flowers with predators, but it is not clear how far away they will move to continue foraging. If these distances are relatively small, the impact of predators on the plant–pollinator mutualism may be lessened. The plant could continue to receive some pollination, and pollinators would reduce the time and energy needed to search for another patch. 2. A native crab spider, Xysticus elegans, was placed on one cluster in a small array of Baccharis pilularis inflorescence clusters, and the preferred short‐range foraging distances of naturally visiting pollinators was determined. 3. Nearly all pollinator taxa (honey bees, wasps, other Hymenoptera, and non‐bombyliid flies) spent less time foraging on the predator cluster. 4. The key result of this study is that inflorescences within 90 mm of the crab spider were avoided by visiting honey bees and wasps, which spent three‐ and 18‐fold more time, respectively, foraging on more distant flower clusters. 5. Whether honey bees can use olfaction to detect spiders was then tested, and this study provides the first demonstration that honey bees will avoid crab spider odour alone at a food source.  相似文献   

4.
According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.  相似文献   

5.
Although the behaviour of animals facing the conflicting demands of increasing foraging success and decreasing predation risk has been studied in many taxa, the response of pollinators to variations in both factors has only been studied in isolation. We compared visit rates of two pollinator species, hoverflies and honeybees, to 40 Chrysanthemum segetum patches in which we manipulated predation risk (patches with and without crab spiders) and nectar availability (rich and poor patches) using a full factorial design. Pollinators responded differently to the tradeoff between maximising intake rate and minimising predation risk: honeybees preferred rich safe patches and avoided poor risky patches while the number of hoverflies was highest at poor risky patches. Because honeybees were more susceptible to predation than hoverflies, our results suggest that, in the presence of competition for resources, less susceptible pollinators concentrate their foraging effort on riskier resources, where competition is less severe. Crab spiders had a negative effect on the rate at which inflorescences were visited by honeybees. This effect was mediated through changes in the foraging strategy of honeybees, and could, in principle, be reversed by increasing nectar productivity of inflorescences. Our study shows that both pollinator species responded simultaneously and differently to variations in food reward and predation risk, and highlights the importance of studying the foraging strategies of pollinators in order to fully understand how plant–pollinator interactions are established.  相似文献   

6.
1. Australian crab spiders exploit the plant–pollinator mutualism by reflecting UV light that attracts pollinators to the flowers where they sit. However, spider UV reflection seems to vary broadly within and between individuals and species, and we are still lacking any comparative studies of prey and/or predator behaviour towards spider colour variation. 2. Here we looked at the natural variation in the coloration of two species of Australian crab spiders, Thomisus spectabilis and Diaea evanida, collected from the field. Furthermore, we examined how two species of native bees responded to variation in colour contrast generated by spiders sitting in flowers compared with vacant flowers. We used data from a bee choice experiment with D. evanida spiders and Trigona carbonaria bees and also published data on T. spectabilis spiders and Austroplebeia australis bees. 3. In the field both spider species were always achromatically (from a distance) undetectable but chromatically (at closer range) detectable for bees. Experimentally, we showed species‐specific differences in bee behaviour towards particular spider colour variation: T. carbonaria bees did not show any preference for any colour contrasts generated by D. evanida spiders but A. australis bees were more likely to reject flowers with more contrasting T. spectabilis spiders. 4. Our study suggests that some of the spider colour variation that we encounter in the field may be partly explained by the spider's ability to adjust the reflectance properties of its colour relative to the behaviour of the species of prey available.  相似文献   

7.
Previous research has shown that the presence of a reward on average doubles reproductive success in orchids by correspondingly increasing the frequency of pollinator visitations. We examined whether such reward-induced increases have a downstream effect on the behaviour of ambush predators concealed in orchid inflorescences, extending observations begun at Downe by Charles Darwin. Specifically, we studied three orchid-rich sites in southern England, in order to compare the occurrence of crab spiders on three coexisting species of terrestrial orchids: the nectariferous Gymnadenia conopsea versus the nectar-less Dactylorhiza fuchsii and Anacamptis pyramidalis . No significant difference was observed between rewarding and non-rewarding inflorescences at Risborough, whereas at Aston Clinton the nectar-less species supported significantly more crab spiders, albeit mainly in relatively short grass. Comparison of the two non-rewarding species present at Downe approximated a significant preference by the spiders for Anacamptis , which more closely resembles the rewarding Gymnadenia . The presence of a floral reward does not result in a higher frequency of crab spiders. We speculate that concealment quality of the inflorescence, the nature of the dominant pollinator(s), and/or ease of movement of spiders between inflorescences may be more important than frequency of visits by potential prey, particularly when no other form of concealment is readily available.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 763–771.  相似文献   

8.
Abstract The influence of the architecture of vegetative branches on the distribution of plant‐dwelling spiders has been intensively studied, and the effects on the aggregation of individuals in several spider species on plants include variation in prey abundance, availability of predator‐free refuges and smoother microclimate conditions. The emergence of inflorescences at the reproductive time of the plants changes branch architecture, and could provide higher prey abundance for the spiders. The distribution of spiders between inflorescences and vegetative branches was compared on four widespread plant species in a Brazilian savannah‐like system. Inflorescences attracted more spiders than vegetative branches for all plant species sampled. The influence of branch type (inflorescence and vegetative) on spider distribution was also evaluated by monitoring branches of Baccharis dracunculifolia DC. in vegetative and flowering periods for 1 year, and through a field experiment carried out during the same period where artificial inflorescences were available for spider colonization. Artificial inflorescences attached to B. dracunculifolia branches attracted more spiders than non‐manipulated vegetative branches for most of the year. However, this pattern differed among spider guilds. Foliage‐runners and stalkers occurred preferentially on artificial inflorescences relative to control branches. The frequencies of ambushers and web‐builders were not significantly different between treatment and control branches. However, most ambush spiders (65%) occurred only during the flowering period of Bdracunculifolia, suggesting that this guild was influenced only by natural inflorescences. The experimental treatment also influenced the size distribution of spiders: larger spiders were more abundant on artificial inflorescences than on vegetative branches. The hypothesis that habitat architecture can influence the spider assemblage was supported. In addition, our observational and experimental data strongly suggest that inflorescences can be a higher quality microhabitat than non‐reproductive branches for most plant‐dwelling spiders.  相似文献   

9.
Biotic and abiotic factors may individually or interactively disrupt plant–pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant–pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant–pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.  相似文献   

10.
Crab spiders affect flower visitation by bees   总被引:6,自引:0,他引:6  
In a field experiment, the bumblebee, B. ternarius , visited milkweed patches harboring crab spiders, Misumena vatia , at a lower frequency than patches free of crab spiders, and honeybees showed a similar but non-significant trend. Two other bumblebee species, B. terricola and B. vagans , did not avoid the spider patches. The latter two species are larger than B. ternarius and honeybees and suffer lower crab-spider predation. As far as we know, this is the first field study documenting negative effects of predators on flower visitation rate by pollinator populations. Our study suggests that pollinator response to predation may influence pollinator-plant interactions.  相似文献   

11.
Pollinators as mediators of top-down effects on plants   总被引:1,自引:0,他引:1  
This paper explores the idea that predators may disrupt plant–pollinator relationships and consequently inhibit reproduction in flowering plants. Amidst growing evidence that predators influence plant–pollinator interactions, I suggest that such pollinator‐mediated indirect effects may be a common feature of terrestrial communities, with implications for research into top‐down effects and pollination ecology. Experimental evidence of such an effect from a riparian system in northern California is provided, where crab spiders decreased seed production in inflorescences of the invasive plant Leucanthemum vulgare by reducing the frequency and duration of floral visits by pollinating insects.  相似文献   

12.
Floral rewards do not only attract pollinators, but also herbivores and their predators. Ants are attracted by extrafloral nectaries (EFNs), situated near flowers, and may interfere with the efficiency and behaviour of pollinators. We tested the hypothesis that the impacts of ant–pollinator interactions in plant–pollinator systems are dependent on (1) the seasonal activity of EFNs, which increase ant abundance closer to flowers; (2) consequently, an ant effect, where ants decrease the temporal niche overlap of bees due to predator avoidance; and (3) ant density, where higher densities may negatively affect plant–pollinator interactions and plant performance. We studied two ant–plant–pollinator systems based on Banisteriopsis campestris and Banisteriopsis malifolia plant species. The periods of high ant abundance coincided with plant species blooming. The presence of ants around flowers reduced the visitation rates of the smaller bees and the temporal niche overlap between bee species was not higher than randomly expected when ants had free access. Additionally, we observed variable ant effects on fruit set and duration of bee visits to both Malpighiaceae species when ant density was experimentally kept constant on branches, especially on B. campestris. Our goal was to show the dual role of ant density effects, especially because the different outcomes are not commonly observed in the same plant species. We believe that reduced temporal niche overlap between floral visitors due to ant presence provides an opportunity for smaller bees to improve compatible pollination behaviour. Additionally, we concluded that ant density had variable effects on floral visitor behaviours and plant reproductive performance.  相似文献   

13.
It has often been proposed that nectarless deceptive orchid species exploit naïve pollinators in search of food before they learn to avoid their flowers, and that intraspecific floral trait polymorphism, often noted in this plant group, could prolong the time needed for learning, thus increasing orchid reproductive success. We tested the importance of avoidance learning in a European deceptive orchid, Anacamptis morio, which has been reported to have a highly variable fragrance bouquet among individuals. We used an indirect approach, i.e. we facilitated pollinators’ ability to learn to avoid A. morio by adding anisaldehyde to selected inflorescences, a scent compound that is easily perceived by the natural pollinators and produced in large quantities by the closely related, nectar producing Anacamptis coriophora, a species that shares pollinator species with A. morio. In a series of three experiments (in artificial arrays, in natural populations and in bumblebee behavioural observations), we consistently found no difference either of reproductive success of or visitation rates to scent‐added versus control inflorescences. We also found that the decrease of reproductive success over time in artificial populations of this deceptive species was not as important as expected. Together, these data suggest that pollinators do not fully learn to avoid deceptive inflorescences, and that pollinator avoidance behaviour alone may explain the lower reproductive success usually found in deceptive orchids. We discuss the possible explanations for this pattern in deceptive orchids, particularly in relation to pollinator cognition and learning abilities. Lastly, in light of our results, the potential for higher average reproductive success in deceptive orchids with high phenotypic variability driven by avoidance learning thus appears to be challenged.  相似文献   

14.
A meta-analysis of predation risk effects on pollinator behaviour   总被引:1,自引:0,他引:1  
Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.  相似文献   

15.
Pollinators represent an important intermediary by which different plant species can influence each other’s reproductive fitness. Floral neighbors can modify the quantity of pollinator visits to a focal species but may also influence the composition of visitor assemblages that plants receive leading to potential changes in the average effectiveness of floral visits. We explored how the heterospecific floral neighborhood (abundance of native and non-native heterospecific plants within 2 m × 2 m) affects pollinator visitation and composition of pollinator assemblages for a native plant, Phacelia parryi. The relative effectiveness of different insect visitors was also assessed to interpret the potential effects on plant fitness of shifts in pollinator assemblage composition. Although the common non-native Brassica nigra did not have a significant effect on overall pollinator visitation rate to P. parryi, the proportion of flower visits that were made by native pollinators increased with increasing abundance of heterospecific plant species in the floral neighborhood other than B. nigra. Furthermore, native pollinators deposited twice as many P. parryi pollen grains per visit as did the nonnative Apis mellifera, and visits by native bees also resulted in more seeds than visits by A. mellifera. These results indicate that the floral neighborhood can influence the composition of pollinator assemblages that visit a native plant and that changes in local flower communities have the potential to affect plant reproductive success through shifts in these assemblages towards less effective pollinators.  相似文献   

16.
The effects of predation risk from crab spiders on bee foraging behavior   总被引:2,自引:0,他引:2  
Recent studies have suggested that top–down effects ofpredation on plant–pollinator interactions may not be,as previously thought, rare and/or weak. In this paper, we explorethe effects of crab spiders (Araneae: Thomisidae) on the behaviorof 2 species of bee (Hymenoptera: Apidae) foraging for nectarand pollen on 3 different plant species in central Portugal.In 2 experiments, we found that the eusocial bee Apis melliferawas significantly less likely to inspect and accept a floweror inflorescence if it harbored a spider. In contrast, we foundno such effects of spiders on the behavior of the solitary beeEucera notata. Further experiments showed that the effects ofenvironmental cues associated with predators on flower visitationby A. mellifera were detectable even when no spider was presentat the moment a flower was encountered. Such indirect effectswere only identified, however, in bees foraging on 1 of 2 plantspecies studied. In a final experiment, A. mellifera was shownto respond negatively to the presence of the corpses of conspecificsglued to flowers. This suggests that prey corpses left exposedon petals or bracts by spiders provide an obvious cue that beescan use to avoid predators. These results add to a growing bodyof evidence that plant–pollinator interactions are notimmune to the effects of predation and suggest that the strengthof such effects vary both between and within species.  相似文献   

17.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

18.
In protective ant–plant mutualisms, plants offer ants food (such as extrafloral nectar and/or food bodies) and ants protect plants from herbivores. However, ants often negatively affect plant reproduction by deterring pollinators. The aggressive protection that mutualistic ants provide to some myrmecophytes may enhance this negative effect in comparison to plant species that are facultatively protected by ants. Because little is known about the processes by which myrmecophytes are pollinated in the presence of ant guards, we examined ant interactions with herbivores and pollinators on plant reproductive organs. We examined eight myrmecophytic and three nonmyrmecophytic Macaranga species in Borneo. Most of the species studied are pollinated by thrips breeding in the inflorescences. Seven of eight myrmecophytic species produced food bodies on young inflorescences and/or immature fruits. Food body production was associated with increased ant abundance on inflorescences of the three species observed. The exclusion of ants from inflorescences of one species without food rewards resulted in increased herbivory damage. In contrast, ant exclusion had no effect on the number of pollinator thrips. The absence of thrips pollinator deterrence by ants may be due to the presence of protective bracteoles that limit ants, but not pollinators, from accessing flowers. This unique mechanism may account for simultaneous thrips pollination and ant defense of inflorescences.  相似文献   

19.
The effects of floral herbivores on floral traits may result in alterations in pollinator foraging behaviour and subsequently influence plant reproductive success. Fed-upon plants may have evolved mechanisms to compensate for herbivore-related decreased fecundity. We conducted a series of field experiments to determine the relative contribution of floral herbivores and pollinators to female reproductive success in an alpine herb, Pedicularis gruina, in two natural populations over two consecutive years. Experimental manipulations included bagging, hand supplemental, geitonogamous pollination, and simulated floral herbivory. Bumblebees not only avoided damaged flowers and plants but also decreased successive visits of flowers in damaged plants, and the latter may reduce the level of geitonogamy. Although seed set per fruit within damaged plants was higher than that in intact plants, total seed number in damaged plants was less than that in intact plants, since floral herbivory-mediated pollinator limitation led to a sharp reduction of fruit set. Overall, the results suggest that resource reallocation within inflorescences of damaged plants may partially compensate for a reduction in seed production. Additionally, a novel finding was the decrease in successive within-plant bumblebee visits following floral herbivory. This may increase seed quantity and quality of P. gruina since self-compatible species exhibit inbreeding depression. The patterns of compensation of herbivory and its consequences reported in this study give an insight into the combined effects of interactions between floral herbivory and pollination on plant reproductive fitness.  相似文献   

20.
Gómez JM 《Oecologia》2005,143(3):412-418
In this study, the non-additivity of effects of herbivores and pollinator on fitness of the plant Erysimum mediohispanicum (Cruciferae) has been experimentally tested. The abundance and diversity of the pollinator assemblage of plants excluded from and exposed to mammalian herbivores, and the combined effect of pollinators and herbivores on plant reproduction were determined over a period of 2 years. Pollinator abundance was higher and diversity was lower on plants excluded from herbivores. Furthermore, the experimental exclusions demonstrated that both pollinators and herbivores affected plant fitness, but their effects were not independent. Herbivores only had a detrimental effect on plant fitness when pollinators were present. Similarly, pollinators enhanced fitness only when herbivores were excluded. This outcome demonstrates that the importance of pollinators for plant fitness depends on the occurrence of herbivores, and suggests that herbivores may hamper pollinator-mediated adaptation in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号