首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Iron protoporphyrin IX was required for the growth of H. influenzae. It could be replaced by protoporphyrin IX. When grown on protoporphyrin evidence was obtained for the presence of Fe porphyrin in the organism. It was concluded that the organism could insert iron into the protoporphyrin ring. 2. In the smooth strains, other porphyrins containing no iron such as deutero-, hemato-, meso-, and coproporphyrins could not replace protoporphyrin for growth. Since protoporphyrin has two vinyl groups which other porphyrins lack, it was concluded that the two vinyl groups were essential for growth. 3. When porphyrins lacking vinyl groups were converted chemically into iron porphyrins and then supplied to the organisms it was found that these iron porphyrins supported growth. It was concluded that the "smooth" organisms were able to insert iron only into the porphyrin containing the vinyl groups; i.e., protoporphyrin. One function of the vinyl groups then was to permit iron to be inserted biologically into the porphyrin ring. 4. An anomalous behavior in the rough Turner strain was observed and discussed. This organism was able to insert iron into mesoporphyrin at low concentrations but was inhibited by this compound at higher concentrations. In all other reactions with the porphyrins this rough strain behaved in the same was as did the smooth strains. 5. All strains which were grown on iron porphyrins lacking vinyl groups could not reduce nitrate to nitrite. When grown on protoporphyrin or Fe protoporphyrin reduction of nitrate occurred. It was concluded that the nitrate-reducing mechanism required the presence of the vinyl groups either for its formation or function. 6. The porphyrins lacking iron and lacking vinyl groups inhibited the growth of H. influenzae on Fe protoporphyrin. The inhibition between a porphyrin and Fe protoporphyrin was a competitive one. It was suggested that the porphyrin inhibited the growth-promoting properties of Fe protoporphyrin by attaching on to a particular apoprotein, thus preventing the formation of a heme catalyst. Likewise, competition between two growth-promoting Fe porphyrins for apoenzymes could be shown to occur. 7. Protoporphyrin and Fe protoporphyrin supported growth. When their propionic acid side chains were esterified they no longer supported growth. It was suggested that the esterified carboxyl groups could not attach to the specific apoproteins to form the heme enzymes and so could not act to support growth. For the same reason the inhibitory action of porphyrins lacking vinyl groups could be prevented by esterifying their propionic acid groups.  相似文献   

2.
The green heme protein sulfmyoglobin (SMb) has been suggested to contain a sulfur-modified iron chlorin prosthetic group. To evaluate this hypothesis, we have obtained high-frequency (greater than 1000 cm-1) resonance Raman spectra of both oxidized and reduced SMb with 457.9-, 488.0-, 514.5-, 568.2-, and 647.1-nm excitation. The SMb spectra are compared to those of native met- and deoxymyoglobin (Mb). Vibrational frequencies for SMb are generally similar to those of Mb, suggesting a high-spin state for both the Fe(III) and Fe(II) SMb species, as is typical of native Mb. However, major differences between SMb and Mb occur both for patterns of relative spectral intensities and for depolarization ratios. In particular, all B1g-depolarized porphyrin modes in the Mb spectra have become polarized, totally symmetric vibrational modes in the SMb spectra. These contrasts reflect a dramatic lowering of the effective symmetry for the SMb prosthetic group. Several new bands are observed in SMb spectra that are not present in spectra of either native Mb or iron protoporphyrin IX complexes. The observation of additional polarized bands flanking the oxidation state marker, V4, is of particular interest. In a parallel study, we compared the resonance Raman spectral properties of iron protoporphyrin IX-derived chlorins and metallo-octaethylchlorins with those of the analogous porphyrins: the chlorin spectra exhibited altered intensity patterns, an increased number of totally symmetric (polarized) vibrational bands, and several new vibrational bands, including one or two in the region of the oxidation state marker, V4. Thus, the resonance Raman spectral characteristics of SMb and metallo-chlorins are complementary and strongly support a chlorin prosthetic group for SMb. Furthermore, they establish testable criteria for investigating the prosthetic group structures of other green heme proteins by resonance Raman spectroscopy.  相似文献   

3.
A series of ferric low-spin derivatives of myoglobin containing its natural prosthetic group, iron protoporphyrin IX, and reconstituted with iron heme s (a formyl-substituted porphyrin) and iron methylchlorin have been examined using low-temperature electron paramagnetic resonance (EPR) spectroscopy. Good agreement is observed between the EPR properties of parallel derivatives of natural myoglobin and heme s-myoglobin. Likewise, the EPR properties of parallel adducts of three types of iron chlorins, methylchlorin-myoglobin, sulfyomyoglobin (a myoglobin derivative known to contain a chlorin macrocycle) and synthetic chlorin models are similar to each other. The ferric chlorin systems are shown to exhibit increased tetragonality and decreased rhombicity values relative to protoporphyrin/formylporphyrin systems. Thus, EPR spectroscopy is a very useful technique with which to probe the coordination structure of naturally occurring iron chlorin proteins and the method can be used to distinguish between proteins containing iron formylporphyrins and iron chlorin prosthetic groups.  相似文献   

4.
Upon photoirradiation under aerobic conditions, the porphyrin prosthetic group in Mg-substituted horseradish peroxidase was oxidized to a mixture of its pi-cation radical and an oxidized product with an absorption band at 448 nm. The 448 nm compound was then converted to a 489 nm compound in the dark and the activation energy for the conversion was 19.3 kcal/mol. About 1 mol of O2 was consumed per mol of the 448 nm compound formed and no O2 consumption was seen in the dark reaction. The substitution of ethyl groups (meso) and hydroxyethyl groups (hemato) for the vinyl groups in protoporphyrin IX did not have an effect on the result. Under anaerobic conditions and in the presence of a suitable electron acceptor, the only photooxidation product of porphyrin was its pi-cation radical. The formation of hydroxyl radicals during irradiation under aerobic conditions was confirmed by the spin-trapping method. The formation of the above two radicals could be followed by ESR spectroscopy separately at a fixed magnetic field which was set to maximize each ESR signal. The rate of hydroxyl radical formation depended linearly on the concentration of Mg peroxidase. The photooxidation of porphyrin was slow and gave nonspecific product(s) when Mg protoporphyrin IX was present in the heme crevice of apomyoglobin or free in solution.  相似文献   

5.
H Hori  M Ikeda-Saito 《Biochemistry》1990,29(30):7106-7112
During the course of a reducing reaction using ketyl radicals generated from ketone photoreduction with ultraviolet light, a photoinduced chemical modification of the chromophore group in myeloperoxidase has been found. Light absorption and resonance Raman spectra for this modified enzyme indicated an iron porphyrin chromophore group. The alkaline pyridine hemochrome of the modified enzyme exhibited an optical spectrum closely related to that of iron protoporphyrin IX. The chromophore group of the modified myeloperoxidase was cleaved from the protein by methoxide. Proton magnetic resonance of the diamagnetic bis(cyanide) compound of the extracted heme group showed the presence of two vinyl and three methyl side chains associated with a porphyrin macrocycle. These data provide further insight into the structure of the active site in myeloperoxidase. The EPR spectral properties and enzymatic activities of the native myeloperoxidase are essentially conserved in the modified enzyme. Our present results indicate that the heme peripheral substituent is modified while the stereochemical structure surrounding the chromophore group is not altered by the photochemical modification.  相似文献   

6.
A continuous spectroscopic assay has been developed for magnesium protoporphyrin monomethyl ester oxidative cyclase, which records either the dark formation of both free and protein-bound magnesium phaeoporphyrin or, following flash illumination, its corresponding chlorin. The properties of the enzyme were studied in wheat etioplasts. When plastids were pre-illuminated in the presence of NADPH all endogenous protochlorophyllide was converted into chlorophyllide and the product of dark incubation with magnesium protoporphyrin monomethyl ester was protein-bound magnesium 2-vinyl phaeoporphyrin a5 monomethyl ester with either a vinyl or an ethyl group at position 4 of the macrocycle alone. Rates of chlorin production from magnesium protoporphyrin monomethyl ester (up to 1240 pmol/h per mg of protein) were adequate to support known rates of plant chlorophyll synthesis. The enzyme required NADPH and O2 and had an approximate Km of 0.5 microM for magnesium protoporphyrin IX monomethyl ester. Lipid-soluble metal-complexing agents inhibited enzyme activity: hydrophilic agents were ineffective. The strong inhibition of mycobactin suggested the involvement of iron ions. Zinc protoporphyrin monomethyl ester, but not copper or nickel or metal-free protoporphyrin monomethyl esters, was a substrate; magnesium protoporphyrin dimethyl ester was inhibitory. The activity of the enzyme was unchanged by prior greening of the plants. The activity in isolated etioplasts was very dependent upon intactness of the plastid structure.  相似文献   

7.
Cytochromes P450 CYP102 A1, 1A2, and 3A4, all belonging to the class II type of P450 enzymes, were studied by resonance Raman spectroscopy. Spectra were measured for the oxidized substrate-free, oxidized substrate-bound, and reduced forms of each of these P450s. The analysis of the resonance Raman spectra indicates that the individual isoforms differ with respect to orientation and conformations of the heme side chains, whereas the overall porphyrin geometry is essentially the same. In the oxidized state, the vinyl groups exhibit both a coplanar and an out-of-plane orientation with respect to the heme, albeit with different relative propensities in the various isoforms. In the reduced state, both vinyl groups are forced into a coplanar orientation. In addition to the differences in behavior of the vinyl groups, the redox-linked spectral changes also include the bending mode of the propionate side chains. The spectral differences associated with the porphyrin substituents are likely to reflect subtle conformational differences in the heme pocket of various P450 isoforms which may constitute the structural basis for the known variability of their functions.  相似文献   

8.
The role of hemin in the maintenance of protein synthesis in reticulocyte lysates was examined by comparing the effects of various porphyrins and metalloporphyrins on the protein kinase activity of the hemin-controlled repressor and on protein synthesis. The porphyrin requirements for maintenance of protein synthesis were relatively specific. Iron and cobalt metalloporphyrins sustained protein synthesis whereas other metalloporphyrins, metal-deficient porphyrins, and non-porphyrin precursor and degradation products of protoporphyrin IX were ineffective. These same compounds were examined for their effectiveness in inhibiting the protein kinase activity of the hemin-controlled repressor with initiation factor 2 (eIF-2). Most of the metalloporphyrins and porphyrins tested were inhibitory. The presence of the iron atom in the porphyrin was not essential for inhibition, but the maintenance of the integrity of the porphyrin ring was imperative. The porphyrins which inhibited the hemin-regulated protein kinase contained vinyl groups or ethyl groups, or were protonated in the 2- and 4-positions of the porphyrin ring, whereas those with bulky or acidic groups in these positions were ineffective. Precursor and degradation products of protoporphyrin IX and synthetic porphyrins modified at other positions had no effect on the enzyme. Both hemin and protoporphyrin IX inhibited phosphorylation of eIF-2 exogenously added to a reticulocyte lysate; however, hemin sustained protein synthesis in the lysate, whereas protoporphyrin IX did not. These results suggest that regulation of the protein kinase phosphorylating the alpha subunit of eIF-2 is not the only point at which hemin modulates protein synthesis in reticulocytes and reticulocyte lysates, since a correlation between inhibition of protein synthesis, inhibition of protein kinase activity, and phosphorylation of eIF-2 is not observed with all porphyrins.  相似文献   

9.
Jacobs JM  Jacobs NJ 《Plant physiology》1993,101(4):1181-1187
We have investigated the formation of porphyrin intermediates by isolated barley (Hordeum vulgare) plastids incubated for 40 min with the porphyrin precursor 5-aminolevulinate and in the presence and absence of a diphenylether herbicide that blocks protoporphyrinogen oxidase, the enzyme in chlorophyll and heme synthesis that oxidizes protoporphyrinogen IX to protoporphyrin IX. In the absence of herbicide, about 50% of the protoporphyrin IX formed was found in the extraplastidic medium, which was separated from intact plastids by centrifugation at the end of the incubation period. In contrast, uroporphyrinogen, an earlier intermediate, and magnesium protoporphyrin IX, a later intermediate, were located mainly within the plastid. When the incubation was carried out in the presence of a herbicide that inhibits protoporphyrinogen oxidase, protoporphyrin IX formation by the plastids was completely abolished, but large amounts of protoporphyrinogen accumulated in the extraplastidic medium. To detect extraplastidic protoporphyrinogen, it was necessary to first oxidize it to protoporphyrin IX with the use of a herbicide-resistant protoporphyrinogen oxidase enzyme present in Escherichia coli membranes. Protoporphyrinogen is not detected by some commonly used methods for porphyrin analysis unless it is first oxidized to protoporphyrin IX. Protoporphyrin IX and protoporphyrinogen found outside the plastid did not arise from plastid lysis, because the percentage of plastid lysis, measured with a stromal marker enzyme, was far less than the percentage of these porphyrins in the extraplastidic fraction. These findings suggest that of the tetrapyrrolic intermediates synthesized by the plastids, protoporphyrinogen and protoporphyrin IX, are the most likely to be exported from the plastid to the cytoplasm. These results help explain the extraplastidic accumulation of protoporphyrin IX in plants treated with photobleaching herbicides. In addition, these findings suggest that plastids may export protoporphyrinogen or protoporphyrin IX for mitochondrial heme synthesis.  相似文献   

10.
1. The formation of protoporphyrin from red blood cells or purified haemoglobin in aqueous perchloric acid media without the prior isolation of haemin is described. The reaction is carried out in the absence of oxygen and in red light. Even traces of oxygen inhibit the reaction by oxidative destruction of protoporphyrin and by the oxidation of haem to haematin. 2. Perchloric acid releases iron and protoporphyrin from haemoglobin at similar rates, but the amount of protoporphyrin in the filtrate varies with the solubility of protoporphyrin in the concentration of perchloric acid used. The yield of protoporphyrin may reach 50–60%. Less than 5μg. of haemoglobin/ml. can be detected by measuring the fluorescence of the porphyrin released. 3. A porphyrin other than protoporphyrin is obtained in small amounts. Its possible identity is discussed. 4. If sodium sulphite is present as a reducing agent the exclusion of oxygen is not required, but the porphyrin formed is more polar and more soluble in water than protoporphyrin. The presence of oxygen appears to be necessary for the formation of this polar porphyrin.  相似文献   

11.
A Desbois  M Tegoni  M Gervais  M Lutz 《Biochemistry》1989,28(20):8011-8022
Resonance Raman spectra of Hansenula anomala L-lactate:cytochrome c oxidoreductase (or flavocytochrome b2), of its cytochrome b2 core, and of a bis(imidazole) iron-protoporphyrin complex were obtained at the Soret preresonance from the oxidized and reduced forms. Raman contributions from both the isoalloxazine ring of flavin mononucleotide (FMN) and the heme b2 were observed in the spectra of oxidized flavocytochrome b2. Raman diagrams showing frequency differences of selected FMN modes between aqueous and proteic environments were drawn for various flavoproteins. These diagrams were closely similar for flavocytochrome b2 and for flavodoxins. This showed that the FMN structure must be very similar in both types of proteins, despite their very different proteic pockets. However, the electron density at this macrocycle was found to be higher in flavocytochrome b2 than in these electron transferases. No significant difference was observed between the heme structures in flavocytochrome b2 and in cytochrome b2 core. The porphyrin center-N(pyrrole) distances in the oxidized and reduced heme b2 were estimated to be 1.990 and 2.022 A from frequencies of porphyrin skeletal modes, respectively. The frequency of the vinyl stretching mode of protoporphyrin was found to be very affected in resonance Raman spectra of flavocytochrome b2 and of cytochrome b2 core (1634-1636 cm-1) relative to those observed in the spectra of iron-protoporphyrin [bis(imidazole)] complexes (1620 cm-1). These specificities were interpreted as reflecting a near coplanarity of the vinyl groups of heme b2 with the pyrrole rings to which they are attached. The low-frequency regions of resonance Raman indicated that the iron atoms of the four hemes b2 are in the porphyrin plane whatever their oxidation state. The histidine-Fe-histidine symmetric stretching mode was located at 205 cm-1 in the spectra of flavocytochrome b2 and of cytochrome b2 core. It was insensitive to the iron oxidation state and indicated strong Fe-His bonds in both states.  相似文献   

12.
The porphyrin requirements for growth recovery of Porphyromonas gingivalis in heme-depleted cultures are investigated. In addition to physiologically relevant sources of heme, growth recovery is stimulated by a number of noniron porphyrins. These data demonstrate that, as for Haemophilus influenzae, reliance on captured iron and on exogenous porphyrin is manifest as an absolute growth requirement for heme. A number of outer membrane proteins including some gingipains contain the hemoglobin receptor (HA2) domain. In cell surface extracts, polypeptides derived from HA2-containing proteins predominated in hemoglobin binding. The in vitro porphyrin-binding properties of a recombinant HA2 domain were investigated and found to be iron independent. Porphyrins that differ from protoporphyrin IX in only the vinyl aspect of the tetrapyrrole ring show comparable effects in competing with hemoglobin for HA2 and facilitate growth recovery. For some porphyrins which differ from protoporphyrin IX at both propionic acid side chains, the modification is detrimental in both these assays. Correlations of porphyrin competition and growth recovery imply that the HA2 domain acts as a high-affinity hemophore at the cell surface to capture porphyrin from hemoglobin. While some proteins involved with heme capture bind directly to the iron center, the HA2 domain of P. gingivalis recognizes heme by a mechanism that is solely porphyrin mediated.  相似文献   

13.
The chemical induction of porphyrin synthesis has been investigated in etiolated and greening leaves of Phaseolus vulgaris L. var. Red Kidney. When these leaves are incubated in darkness with solutions of transition metal ion chelators such as α,α′-dipyridyl, 1,10-phenanthroline, pyridine-2-aldoxime, or other related aromatic heterocyclic nitrogenous bases, they synthesize large amounts of protochlorophyllide and Mg protoporphyrins. Greening leaves produce more porphyrin than do etiolated leaves under such conditions. If the leaves are then transferred to 1 millimolar solutions of various transition metal salts such as Fe2+, Zn2+, or Co2+ (but not Mn2+ or Mg2+), Mg protoporphyrin (monomethyl ester) synthesis immediately ceases and the pigment(s) rapidly disappear(s); protochlorophyllide synthesis gradually diminishes during 4 to 8 hours of treatment. The loss in Mg protoporphyrin(s) can be accounted for by a simultaneous increase in protochlorophyllide in partially greened leaves but not in etiolated leaves. In the latter, the decline in Mg protoporphyrin(s) initiated by the application of Zn2+ is retarded by low temperature and anaerobiosis but not by respiratory inhibitors. Cycloheximide inhibits the loss of Mg protoporphyrin(s) but does not affect their conversion to protochlorophyllide.  相似文献   

14.
Previous genetic and biochemical studies have confirmed that hemoglobin and hemin utilization in Porphyromonas gingivalis is mediated by the outer membrane hemoglobin and heme receptor HmuR, as well as gingipain K (Kgp), a lysine-specific cysteine protease, and gingipain R1 (HRgpA), one of two arginine-specific cysteine proteases. In this study we report on the binding specificity of the recombinant P. gingivalis HmuR protein and native gingipains for hemoglobin, hemin, various porphyrins, and metalloporphyrins as assessed by spectrophotometric assays, by affinity chromatography, and by enzyme-linked immunosorbent assay. Protoporphyrin, mesoporphyrin, deuteroporphyrin, hematoporphyrin, and some of their iron, copper, and zinc derivatives were examined to evaluate the role of both the central metal ion and the peripheral substituents on binding to recombinant HmuR and soluble gingipains. Scatchard analysis of hemin binding to Escherichia coli cells expressing recombinant membrane-associated six-His-tagged HmuR yielded a linear plot with a binding affinity of 2.4 x 10(-5) M. Recombinant E. coli cells bound the iron, copper, and zinc derivatives of protoporphyrin IX (PPIX) with similar affinities, and approximately four times more tightly than PPIX itself, which suggests that the active site of HmuR contains a histidine that binds the metal ion in the porphyrin ring. Furthermore, we found that recombinant HmuR prefers the ethyl and vinyl side chains of the PPIX molecule to either the larger hydroxyethyl or smaller hydrogen side chains. Kgp and HRgpA were demonstrated to bind various porphyrins and metalloporphyrins with affinities similar to those for hemin, indicating that the binding of Kgp and HRgpA to these porphyrins does not require a metal within the porphyrin ring. We did not detect the binding of RgpB, the arginine-specific cysteine protease that lacks a C-terminal hemagglutinin domain, to hemoglobin, porphyrins, or metalloporphyrins. Kgp and HRgpA, but not RgpB, were demonstrated to bind directly to soluble recombinant six-His-tagged HmuR. Several possible mechanisms for the cooperation between outer membrane receptor HmuR and proteases Kgp and HRgpA in hemin and hemoglobin binding and utilization are discussed.  相似文献   

15.
Overexpression in Escherichia coli of a tau (U) class glutathione transferase (GST) from maize (Zea mays L.), termed ZmGSTU1, caused a reduction in heme levels and an accumulation of porphyrin precursors. This disruption was highly specific, with the expression of the closely related ZmGSTU2 or other maize GSTs having little effect. Expression in E. coli of a series of chimeric ZmGSTU1/ZmGSTU2 proteins identified domains responsible for disrupting porphyrin metabolism. In addition to known heme precursors, expression of ZmGSTU1 led to the accumulation of a novel glutathione conjugate of harderoporphyrin(ogen) (2,7,12,18-tetramethyl-3-vinylporphyrin-8,13,17-tripropionic acid). Using the related protoporphyrinogen as a substrate, conjugation could be shown to occur on one vinyl group and was actively catalyzed by the ZmGSTU. In plant transgenesis studies, the ZmGSTUs did not perturb porphyrin metabolism when expressed in the cytosol of Arabidopsis or tobacco. However, expression of a ZmGSTU1-ZmGSTU2 chimera in the chloroplasts of tobacco resulted in the accumulation of the harderoporphyrin(ogen)-glutathione conjugate observed in the expression studies in bacteria. Our results show that the well known ability of GSTs to act as ligand binding (ligandin) proteins of porphyrins in vitro results in highly specific interactions with porphyrinogen intermediates, which can be demonstrated in both plants and bacteria in vivo.  相似文献   

16.
We describe here a sensitive method for the purification and analysis of porphyrins present in hematoporphyrin derivative. Hematoporphyrin derivative is a solution containing a complex mixture of dicarboxylic porphyrins such as hematoporphyrin IX, monohydroxyethyl monovinyl deuteroporphyrin isomers, and protoporphyrin IX in addition to porphyrin aggregates of variable molecular sizes. This mixture is known for its ability to be selectively retained by tumor cells and for its cytotoxicity in the presence of light. In order to study the mechanisms of hematoporphyrin derivative uptake and its cellular metabolism, extraction methods are required that combine high recoveries with minimum changes of very labile components. Extraction with perchloric acid: methanol mixtures recovered only some 60% of the porphyrins taken up by tumor cells and artifactual fluorescent spots were seen on thin-layer chromatograms. Improved yields were obtained upon extraction with dimethyl sulfoxide or Triton X-100:4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) buffer mixture, but the extracts were not suitable for reverse-phase thin-layer chromatography (RTLC). The procedure described here consists of extracting porphyrins from cultured tumor cells with a buffered detergent followed by sequential chromatography on DEAE-cellulose columns and on reverse-phase octadecylsilyl cartridges. Identification of the isolated free dicarboxylic porphyrins is conveniently done by RTLC.  相似文献   

17.
The biological effects of ultrasound have been investigated vigorously for various applications including the thermal coagulation of tissues, the opening of tight junctions, and localized gene or drug introduction. The synergistic cell killing effect of ultrasound and porphyrin derivatives, the so-called sonodynamic effect, holds promise for cancer treatment. Although several models to explain the sonodynamic effect have been proposed, its exact mechanism, especially in vivo, remains unknown. We examined the effect of a porphyrin derivative, protoporphyrin IX, on ultrasound-induced killing of HeLa cells. In some experiments, the intracellular protoporphyrin IX concentration was increased by 5-aminolevulinic acid treatment of the cells. Although extracellular protoporphyrin IX showed an enhanced cell killing effect by microbubble-enhanced ultrasound, intracellular protoporphyrin IX did not. On the other hand, intracellular protoporphyrin IX enhanced the cell killing effect of hyperthermia, which can be produced by ultrasound exposure, in a moderately acidic environment (pH 6.6). Because porphyrin derivatives are generally imported into the intracellular component in vivo, our results suggest that hyperthermia caused by ultrasound may play an important role in the sonodynamic effect induced by porphyrin derivatives.  相似文献   

18.
Griseofulvin and isogriseofulvin cause, like 3,5-diethoxycarbonyl-1,4-dihydrocollidine, a fall in the activity of the hepatic enzyme porphyrin-metal chelatase and accumulation of protoporphyrin in the liver. Analogues of either griseofulvin or 3,5-diethoxycarbonyl-1,4-dihydrocollidine which do not decrease the chelatase activity are not porphyrogenic on their own, but can potentiate the porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. This suggests the existence of two basically different mechanisms by which drugs stimulate the pathway of porphyrin synthesis in the liver.  相似文献   

19.
A number of porphyrin derivatives have been found to inhibit yeast glyoxalase I (EC 4.4.1.5) at 25 degrees C, including haemin, protoporphyrin IX, coproporphyrin III, haematoporphyrin, deuteroporphyrin as well as meso-(tetrasubstituted) porphines. Bilirubin and chlorophyllin were also inhibitory, but not cobalamin, adipic, pimelic or suberic acids. Whilst the Ki value for linear competitive inhibition by meso-tetra(4-methylpyridyl)porphine was pH-dependent, analogous Ki values for meso-tetra(4-carboxyphenyl)- and meso-tetra(4-sulphonatophenyl)porphines followed the Henderson-Hasselbalch equation with pKapp values of 7.10 and 6.50, respectively. Protoporphyrin showed similar behaviour (pKapp 7.06) with a deviation at lower pH. The haemin pH profile for Ki showed a maximum at approx. pH 6.5. The redox reaction between haemin and glutathione did not interfere in the inhibition studies. The Ki value for S-(p-bromobenzyl)glutathione was pH-independent. A detailed analysis of porphyrin binding modes was undertaken.  相似文献   

20.
Dichroism spectra of chlorophyll a, chlorophyll b and bacteriochlorophyll a in various nematic liquid crystals are reported. The initial orientation of chlorophylls in such a sample is determined by the interaction of the aggregate formed from the pigment and the liquid crystal molecules with the electrode surface on the cell windows. Reorientation is carried out by either an electric or magnetic field. The analysis of the circular dichroism spectra obtained from these samples on the basis of the Mueller matrix shows that the intensity is predominantly related to the texture of the sample. Chlorophyll molecules can be aggregated with liquid crystals in two ways: (1) through the chlorin magnesium atom, which results in the liquid crystal chain being almost perpendicular to the porphyrin ring, or (2) attached parallel to the line connecting the first and third pyrrole rings of the chlorin, the chlorin now lying in the plane of the liquid crystal chains. By comparing the dichroism spectra of various chlorophylls in the same liquid crystal we can draw conclusions concerning the preferred type of aggregation, not only with liquid crystals, but also with biological molecules. These liquid crystal systems are models of the orientation effects found for chlorophyll in lamellae. The model studied in this work is much simpler than the lamellar system but it does exhibit several common properties with the latter. Both systems are anisotropic and show much more intense dichroism signals, often of opposite sign, compared with those observed for photosynthetic pigments in isotropic solutions. Dichroism signals of organism fragments are much more complex than those of our model, which can either be related to the occurrence in the organism of several types of pigments or, for a given type of pigment, could be the result of exciton splitting. On the basis of our model it is shown that small changes in the anisotropy of the pigment in the surroundings have a strong influence on the sign and amplitude of the observed circular dichroism signal. Such effects may be responsible for the structure of the dichroism spectra observed for biological samples. Such structures can be partially related to the superposition of the dichroism signal from various ‘domains’ of chromophore which are different in both pigment arrangement and in the anisotropy of the surroundings of the pigment molecules themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号