首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide dismutase (SOD) enhanced the formation of hydroxyl radicals, which were detected by using the e.s.r. spin-trapping technique, in a reaction mixture containing 3-hydroxyanthranilic acid (or p-aminophenol), Fe3+ ions, EDTA and potassium phosphate buffer, pH 7.4. The hydroxyl-radical formation enhanced by SOD was inhibited by catalase and desferrioxamine, and stimulated by EDTA and diethylenetriaminepenta-acetic acid, suggesting that both hydrogen peroxide and iron ions participate in the reaction. The hydroxyl-radical formation enhanced by SOD may be considered to proceed via the following steps. First, 3-hydroxyanthranilic acid is spontaneously auto-oxidized in a process that requires molecular oxygen and yields superoxide anions and anthranilyl radicals. This reaction seems to be reversible. Secondly, the superoxide anions formed in the first step are dismuted by SOD to generate hydrogen peroxide and molecular oxygen, and hence the equilibrium in the first step is displaced in favour of the formation of superoxide anions. Thirdly, hydroxyl radicals are generated from hydrogen peroxide through the Fenton reaction. In this Fenton reaction Fe2+ ions are available since Fe3+ ions are readily reduced by 3-hydroxyanthranilic acid. The superoxide anions do not seem to participate in the reduction of Fe3+ ions, since superoxide anions are rapidly dismuted by SOD present in the reaction mixture.  相似文献   

2.
Transition metals such as Iron (Fe) and Copper (Cu) are essential for plant cell development. At the same time, due their capability to generate hydroxyl radicals they can be potentially toxic to plant metabolism. Recent works on hydroxyl-radical activation of ion transporters suggest that hydroxyl radicals generated by transition metals could play an important role in plant growth and adaptation to imbalanced environments. In this mini-review, the relation between transition metals uptake and utilization and oxidative stress-activated ion transport in plant cells is analyzed, and a new model depicting both apoplastic and cytosolic mode of ROS signaling to plasma membrane transporters is suggested.  相似文献   

3.
E.P.R. spin trapping has been employed to study radical production during the bactericidal action of three peroxide compounds (peracetic acid, 4-percarboxy-N-isobutyltrimellitimide and magnesium monoperoxyphthalate) upon both Gram negative (Escherichia Coll) and Gram positive (Staphylococcus Aureus) bacteria. Use of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has allowed direct detection of both carbon-centred and hydroxyl radicals, which are produced at varying rates for the different bacteria/peracid systems studied. The inhibition of bactericidal action, by DMPO and two antioxidants, Vitamin C and Trolox C, indicates that radicals are the lethal species and evidence is presented which suggests that radical production is internal to the bacterial cell. Hydroxyl radicals are believed to be the lethal species. The effect of added iron chelators and haem protein inhibitors indicates that iron species and haem proteins in particular are involved. A marked variation is found in observed hydroxyl-radical adduct signals with both the nature and concentration of peracid. A strong inverse correlation is found between the concentration of the observed radical adduct signal and the relative strength of the peroxide as a bactericide; use of a stable nitroxide as a radical scavenger confirms that strong bactericides produce radicals at a much faster rate than weak bactericides. Plots of radical generation versus time are correlated with % bacterial kill, offering further evidence that hydroxyl radicals are the lethal species.  相似文献   

4.
Oxidant-induced DNA damage by quartz in alveolar epithelial cells   总被引:2,自引:0,他引:2  
Respirable quartz has recently been classified as a human carcinogen. Although, studies with quartz using naked DNA as a target suggest that formation of oxyradicals by particles may play a role in the DNA-damaging properties of quartz, it is not known whether this pathway is important for DNA damage in the target cells for quartz carcinogenesis, i.e. alveolar epithelial cells. Therefore, we determined in vitro DNA damage by DQ12 quartz particles in rat and human and alveolar epithelial cells (RLE, A549) using the single cell gel electrophoresis/comet assay. The radical generation capacity of quartz was analysed by electron spin resonance (ESR) and by immunocytochemical analysis of the hydroxyl radical-specific DNA lesion 8-hydroxydeoxyguanosine (8-OHdG) in the epithelial cells. Quartz particles as well as the positive control hydrogen peroxide, caused a dose-dependent increase in DNA strand breaks in both cell lines. DNA damage by quartz was significantly reduced in the presence of the hydroxyl-radical scavengers mannitol or DMSO. The involvement of hydroxyl radicals was further established by ESR measurements and was also demonstrated by the ability of the quartz to induce formation of 8-OHdG. In conclusion, our data show that quartz elicits DNA damage in rat and human alveolar epithelial cells and indicate that these effects are driven by hydroxyl radical-generating properties of the particles.  相似文献   

5.
An assay for the ability of antioxidants to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 cells was developed. Protection against hydrogen-peroxide-induced mutagenicity was observed for quercetin, caffeic acid, ascorbic acid and dimethyl sulfoxide (used as a solvent for water-insoluble antioxidants). No protective effect was observed for green tea extract (weakly pro-oxidative), catechin, rutin, sinigrin, ferulic acid and alpha-tocopherol. Mutagenicity caused by tert-butyl hydroperoxide (tBOOH) was prevented most effectively by quercetin and ascorbic acid, whereas weaker effects were observed for green tea extract and for rutin, and no effect being observed for the other antioxidants tested. The results for hydrogen peroxide indicate iron chelation to be the most important protective mechanism. Radical scavenging appeared to be effective only with dimethyl sulfoxide and ascorbic acid, which are effective scavengers of hydroxyl radicals and were used here in high concentrations. It is proposed that the hydrogen-peroxide-induced mutations in the Salmonella cells are caused by hydroxyl radicals generated by iron ions closely associated with DNA. Protection against mutagenicity caused by tert-butyl hydroperoxide appears to occur mainly through the scavenging of alkoxyl and possibly of alkyl radicals.  相似文献   

6.
The effect of caffeic acid, a kind of catechol, on the Fenton reaction was examined by using the ESR spin trapping technique. Caffeic acid enhanced the formation of hydroxyl radicals in the reaction mixture, which contained caffeic acid, hydrogen peroxide, ferric chloride, EDTA, and potassium phosphate buffer. Chlorogenic acid, which is an ester of caffeic acid with quinic acid, also stimulated the formation of the hydroxyl radicals. Quinic acid did not stimulate the reaction, suggesting that the catechol moiety in chlorogenic acid is essential to the enhancement of the hydroxyl-radical formation. Indeed, other catechols and related compounds such as pyrocatechol, gallic acid, dopamine, and noradrenaline effectively stimulated the formation of the hydroxyl radicals. The above results confirm the idea that the catechol moiety is essential to the enhancement. Ferulic acid, 4-hydroxy-3-methoxybenzoic acid, and salicylic acid had no effect on the formation of the hydroxyl radicals. The results indicate that the enhancement by the catechols of the formation of hydroxyl radicals is diminished if a methyl ester is formed at the position of the hydroxyl group of the catechol. In the absence of iron chelators such as EDTA, DETAPAC, desferrioxamine, citrate, and ADP, formation of hydroxyl radicals was not detected, suggesting that chelators are essential to the reaction. The enhancement of the formation of hydroxyl radicals is presumably due to the reduction of ferric ions by the catechols. Thus, the catechols may exert deleterious effects on biological systems if chelators such as EDTA, DETAPAC, desferrioxamine, citrate, and ADP are present.  相似文献   

7.
Xanthic acids have long been known to act as reducing agents. Recently, D609, a tricyclodecanol derivative of xanthic acid, has been reported to have anti-apoptotic and anti-inflammatory properties that are attributed to specific inhibition of phosphatidyl choline phospholipase C (PC-PLC). However, because oxidative stress is involved in both of these cellular responses, the possibility that xanthates may act as antioxidants was investigated in the current study. Finding that xanthates efficiently scavenge hydroxyl radicals, the mechanism by which D609 and other xanthate derivatives may protect against oxidative damage was further examined. The xanthates studied, especially D609, mimic glutathione (GSH). Xanthates scavenge hydroxyl radicals and hydrogen peroxide, form disulfide bonds (dixanthogens), and react with electrophilic products of lipid oxidation (acrolein) in a manner similar to GSH. Further, upon disulfide formation, dixanthogens are reduced by glutathione reductase to a redox active xanthate. Supporting its role as an antioxidant, D609 significantly (p < 0.01) reduces free radical-induced changes in synaptosomal lipid peroxidation (TBARs), protein oxidation (protein carbonyls), and protein conformation. Thus, in addition to inhibitory effects on PC-PLC, D609 may prevent cellular apoptotic and inflammatory cascades by acting as antioxidants and novel GSH mimics. These results are discussed with reference to potential therapeutic application of D609 in oxidative stress conditions.  相似文献   

8.
Hydrogen peroxide-induced base damage in deoxyribonucleic acid   总被引:5,自引:0,他引:5  
Aqueous solutions of calf thymus deoxyribonucleic acid (DNA) were exposed to hydrogen peroxide in the presence of air. Base products formed in DNA were identified and quantitated following acid hydrolysis and trimethylsilylation using gas chromatography-mass spectrometry. The yields of these products were dependent upon the hydrogen peroxide concentration, and increased in the following order: 8-hydroxyadenine, cytosine glycol, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine, thymine glycol, and 4,6-diamino-5-formamidopyrimidine. Previous studies have shown that these compounds are typically formed in DNA in aqueous solution by hydroxyl radicals generated by ionizing radiation. Hydrogen peroxide is thought to participate in a Fenton-like reaction with transition metals, which are readily bound to DNA in trace quantities, resulting in the production of hydroxyl radicals close to the DNA. This proposed mechanism was examined by exposing DNA to hydrogen peroxide either in the presence of a hydroxyl radical scavenger or following pretreatment of DNA with metal-ion chelators. The results indicate that trace quantities of transition metal ions can react readily with hydrogen peroxide to produce radical species. The production of radical species was monitored by determining the altered bases that resulted from the reaction between radicals and DNA. The yields of the base products were reduced by 40 to 60% with 10 mmol dm-3 of dimethyl sulfoxide. A 100-fold increase in the concentration of dimethyl sulfoxide did not result in a further reduction in hydrogen peroxide-induced base damage. DNA which was freed from bound metal ions by pretreatment with metal ion chelators followed by exhaustive dialysis was found to be an ineffective substrate for hydrogen peroxide. The yields of base products measured in this DNA were at background levels. These results support the role of metal ions bound to DNA in the site-specific formation of highly reactive radical species, most likely hydroxyl radicals, in hydrogen peroxide-induced damage to the bases in DNA.  相似文献   

9.
Protein kinase C signaling and oxidative stress   总被引:32,自引:0,他引:32  
Oxidative stress is involved in the pathogenesis of various degenerative diseases including cancer. It is now recognized that low levels of oxidants can modify cell-signaling proteins and that these modifications have functional consequences. Identifying the target proteins for redox modification is key to understanding how oxidants mediate pathological processes such as tumor promotion. These proteins are also likely to be important targets for chemopreventive antioxidants, which are known to block signaling induced by oxidants and to induce their own actions. Various antioxidant preventive agents also inhibit PKC-dependent cellular responses. Therefore, PKC is a logical candidate for redox modification by oxidants and antioxidants that may in part determine their cancer-promoting and anticancer activities, respectively. PKCs contain unique structural features that are susceptible to oxidative modification. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are readily oxidized by peroxide. When oxidized, the autoinhibitory function of the regulatory domain is compromised and, consequently, cellular PKC activity is stimulated. The C-terminal catalytic domain contains several reactive cysteines that are targets for various chemopreventive antioxidants such as selenocompounds, polyphenolic agents such as curcumin, and vitamin E analogues. Modification of these cysteines decreases cellular PKC activity. Thus the two domains of PKC respond differently to two different type of agents: oxidants selectively react with the regulatory domain, stimulate cellular PKC, and signal for tumor promotion and cell growth. In contrast, antioxidant chemopreventive agents react with the catalytic domain, inhibit cellular PKC activity, and thus interfere with the action of tumor promoters.  相似文献   

10.
Oxygen is a diradical and because of its unique electronic configuration, it has the potential to form strong oxidants (e.g. superoxide radical, hydrogen peroxide and hydroxyl radical) called oxygen free radicals or partially reduced forms of oxygen (PRFO). These highly reactive oxygen species can cause cellular injury by oxidizing lipids and proteins as well as by causing strand breaks in nucleic acids. PRFO are produced in the cell during normal redox reactions including respiration and there are various antioxidants in the cell which scavenge these radicals. Thus in order to maintain a normal cell structure and function, a proper balance between free radical production and antioxidant levels is absolutely essential. Production of PRFO in the myocardium is increased during variousin vivo as well asin vitro pathological conditions and these toxic radicals are responsible for causing functional, biochemical and ultrastructural changes in cardiac myocytes. Indirect evidence of free radical involvement in myocardial injury is provided by studies in which protection against these alterations is seen in the presence of exogenous administration of antioxidants. Endogenous myocardial antioxidants have also been reported to change under various physiological as well as pathophysiological conditions. It appears that endogenous antioxidants respond and adjust to different stress conditions and failure of these compensatory changes may also contribute in cardiac dysfunction. Thus endogenous and/or exogenous increase in antioxidants might have a therapeutic potential in various pathological conditions which result from increased free radical production.  相似文献   

11.
U Rauen  F Petrat  T Li  H De Groot 《FASEB journal》2000,14(13):1953-1964
When incubated at 4 degrees C, cultured rat hepatocytes or liver endothelial cells exhibit pronounced injury and, during earlier rewarming, marked apoptosis. Both processes are mediated by reactive oxygen species, and marked protective effects of iron chelators as well as the protection provided by various other antioxidants suggest that hydroxyl radicals, formed by classical Fenton chemistry, are involved. However, when we measured the Fenton chemistry educt hydrogen peroxide and its precursor, the superoxide anion radical, formation of both had markedly decreased and steady-state levels of hydrogen peroxide did not alter during cold incubation of either liver endothelial cells or hepatocytes. Similarly, there was no evidence of an increase in O2-/H2O2 release contributing to cold-induced apoptosis occurring on rewarming. In contrast to the release/level of O2- and H2O2, cellular homeostasis of the transition metal iron is likely to play a key role during cold incubation of cultured hepatocytes: the hepatocellular pool of chelatable iron, measured on a single-cell level using laser scanning microscopy and the fluorescent indicator phen green, increased from 3.1 +/- 2.3 microM (before cold incubation) to 7.7 +/- 2.4 microM within 90 min after initiation of cold incubation. This increase in the cellular chelatable iron pool was reversible on rewarming after short periods of cold incubation. The cold-induced increase in the hepatocellular chelatable iron pool was confirmed using the calcein method. These data suggest that free radical-mediated hypothermia injury/cold-induced apoptosis is primarily evoked by alterations in the cellular iron homeostasis/a rapid increase in the cellular chelatable iron pool and not by increased formation of O2-/H2O2.  相似文献   

12.
13.
Quinone derivatives of DOPA, dopamine, and N-acetyldopamine inactivate tyrosine hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the catecholamine neurotransmitters. The parent catechols are inert in this capacity. The effects of the catecholquinones on tyrosine hydroxylase are prevented by antioxidants and reducing reagents but not by scavengers of hydrogen peroxide, hydroxyl radicals, or superoxide radicals. Quinone modification of tyrosine hydroxylase modifies enzyme sulfhydryl groups and results in the formation of cysteinyl-catechols within the enzyme. Catecholquinones convert tyrosine hydroxylase to a redox-cycling quinoprotein. Quinotyrosine hydroxylase causes the reduction of the transition metals iron and copper and may therefore contribute to Fenton-like reactions and oxidative stress in neurons. The discovery that a phenotypic marker for catecholamine neurons can be converted into a redox-active species is highly relevant for neurodegenerative conditions such as Parkinson's disease.  相似文献   

14.
Chemical probes for free radicals in biology are important tools; fluorescence and chemiluminescence offer high detection sensitivity. This article reviews progress in the development of probes for "reactive oxygen and nitrogen" species, emphasizing the caution needed in their use. Reactive species include hydrogen peroxide; hydroxyl, superoxide, and thiyl radicals; carbonate radical-anion; and nitric oxide, nitrogen dioxide, and peroxynitrite. Probes based on reduced dyes lack selectivity and may require a catalyst for reaction: despite these drawbacks, dichlorodihydrofluorescein and dihydrorhodamine have been used in well over 2,000 studies. Use in cellular systems requires loading into cells, and minimizing leakage. Reactive species can compete with intracellular antioxidants, changes in fluorescence or luminescence possibly reflecting changes in competing antioxidants rather than free radical generation rate. Products being measured can react further with radicals, and intermediate probe radicals are often reactive toward antioxidants and especially oxygen, to generate superoxide. Common probes for superoxide and nitric oxide require activation to a reactive intermediate; activation is not achieved by the radical of interest and the response is thus additionally sensitive to this first step. Rational use of probes requires understanding and quantitation of the mechanistic pathways involved, and of environmental factors such as oxygen and pH. We can build on this framework of knowledge in evaluating new probes.  相似文献   

15.
When potassium tetraperoxochromate (K3CrO8) is added to platelet suspension media it decomposes to the oxygen species hydrogen peroxide, superoxide radicals, hydroxyl radicals, and singlet oxygen. K3CrO8 induces a reversible shape change and aggregation of human platelets and, in the presence of Tris or sucrose, also the release of serotonin. Its effect on shape change and aggregation is due to the long-lived species hydrogen peroxide and is abolished by indomethacin and acetylsalicylic acid. Superoxide radicals, which are formed from K3CrO8 in HEPES-containing media do not evoke a platelet response. The release of serotonin depends on an interaction of hydroxyl radicals with Tris or sucrose and is associated with excessive formation of thiobarbituric acid-reactive material from platelets. Other scavengers of hydroxyl radicals such as mannitol, dimethylsulfoxide, EDTA or histidine prevent the release and the formation of thiobarbituric acid chromogen. Interaction of hydroxyl radicals with Tris or sucrose most likely results in the generation of short-lived intermediates which may act on platelets to produce thiobarbituric acid chromogen and to promote serotonin release. These effects on platelets are not inhibited by acetylsalicylic acid or indomethacin. Therefore the highly reactive hydroxyl radical and singlet oxygen, when generated extracellularly, do not mediate their effects via the enzyme-catalyzed prostaglandin pathway, in contrast to those evoked by the less reactive hydrogen peroxide.  相似文献   

16.
Trace elements play an important role in oxygen metabolism and therefore in the formation of free radicals. Whereas iron and copper are usually the main enhancers of free radical formation, other trace elements, such as zinc and selenium, protect against the harmful effects of these radicals. To investigate the different protective mechanisms of zinc on radical formation, we examined the effects of added zinc and copper on superoxide dismutase activity. We also studied the effects of copper and iron on xanthine oxidase activity and on the Haber-Weiss cycle (iron, superoxide, and hydrogen peroxide), which generates hydroxyl radicals in vitro. The hypoxanthine/xanthine oxidase radical generating system contained a variety of different physiological ligands for binding the iron. This study confirmed the inhibitory effect of copper on xanthine oxidase activity. Moreover, it demonstrated that zinc inhibited hydroxyl radical formation when this formation was catalyzed by a citrate-iron complex in the hypoxanthine/xanthine oxidase reaction. Finally, human blood plasma inhibited citrate-iron-dependent hydroxyl radical formation under the same conditions. Although trace elements seemed responsible for this antioxidant activity of plasma, it is likely that zinc played no role as a plasma antioxidant. Indeed, calcium appeared to be responsible for most of this effect under our experimental conditions.  相似文献   

17.
Although multiple factors are associated with cardiovascular pathology, there is now an impressive body of evidence that free radicals and nonradical oxidants might cause a number of cardiovascular dysfunctions. Both direct damage to cellular components and/or oxidation of extracellular biomolecules, e.g. LDL, might be involved in the aetiology of cardiovascular diseases. The key molecules in this process seem to be iron and copper ions that catalyse formation of the highly reactive hydroxyl radical. Chelation of iron ions has a beneficial effect on the processes associated with the development of atherosclerosis and formation of post-ischemic lesions. These findings are indirectly supported by the increasing body of evidence that stored body iron plays a crucial role in pathogenesis of atherosclerosis and ischemia/reperfusion injury.  相似文献   

18.
Oxidants,antioxidants and carcinogenesis   总被引:9,自引:0,他引:9  
Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of nitrosamine formation and an alteration of metabolic activations of carcinogens. They can prevent genetic changes by inhibiting DNA damage induced by the ROMs. Therefore, these antioxidants may be helpful in the treatment of human cancer. However, detailed studies are required to draw a definite conclusion.  相似文献   

19.
The action of 1 mM solutions of L-amino acids in 5 mM phosphate buffer, pH 7.4, on the production of hydrogen peroxide and hydroxyl radicals under the action of X-rays and heating has been studied. Hydrogen peroxide was estimated by the method of enhanced luminescence in a system luminol-paraiodophenol-peroxidase and hydroxyl radicals were determined by using the fluorescence probe coumarin-3-carboxylic acid. It was shown that amino acids can be divided by their influence on H202 formation into three groups: those that reduce the yield of H202, that do not influence it, and that increase it. A similar action of amino acids was observed upon heating, but the composition of the groups was different. All amino acids lowered the formation of hydroxyl radicals under the action of X-rays, and the most effective among them were Cys > His > Phe = Met = Trp > Tyr. Met, His and Phe lowered the amount of hydroxyl radicals by heating, Ser raised it, whereas Tyr and Pro did not change it. Thus, amino acids differently influence the formation of reactive oxygen species by the action of X-rays and heat, and some of amino acids reveal themselves as effective natural antioxidants.  相似文献   

20.
Reactive Oxygen Species and the Central Nervous System   总被引:76,自引:0,他引:76  
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of O2.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号