首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An initial observation concerning the failure of [3H]thymidine at high specific activity to be incorporated into the DNA of Crithidia fasciculata for more than a brief initial period has been correlated with the presence at high specific activity in the organism of a thymidine phosphorylase activity with an equilibrium in the direction of catabolism. This enzyme degrades thymidine to thymine which is not utilized by the organism. The enzyme has also been shown to be present in a number of other trypanosomatids, including the culture forms of Trypanosoma cruzi, where the specific activity was nearly as high as that in C. fasciculata. Evidence is presented that in C. fasciculata, the culture forms of T. cruzi and possibly other species of trypanosomatid, the thymidine phosphorylae, together with a thymidylate phosphatase, forms a catabolic pathway which degrades thymine nucleotides to thymine, which is then excreted. About 60% of the thymine nucleotides made by organisms appear to be metabolized through the pathway, suggesting that their synthesis is not subject to completely effective regulatory control.  相似文献   

2.
Trypanothione [T(SH)2], the major redox mediator in pathogenic trypanosomatids, is synthetized stepwise by two distinct enzymes in Crithidia fasciculata, while in Trypanosoma cruzi a single enzyme catalyzes both steps. A full-length reading frame presumed to encode trypanothione synthetase (TryS) was obtained by PCR using DNA of T. brucei as template and primers based on fragments of putative TryS genes. The recombinant protein produced by E. coli Origami (DE3) was purified to homogeneity by chelate and ion exchange chromatography. The enzyme catalyzed both reactions of T(SH)2 biosynthesis. Thus, T(SH)2 synthesis appears to be similar in African (T. brucei) and New World (T. cruzi) trypanosomes but distinct from that of Crithidia.  相似文献   

3.
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.  相似文献   

4.
Trypanosoma cruzi, a pathogenic protozoan causing Chagas disease, lacks ornithine decarboxylase (ODC), the enzyme catalyzing the first step of polyamine biosynthetic pathway in eukaryotic cells. Our results indicate that the auxotrophy for diamines of T. cruzi epimastigotes is due to the absence of an active ODC gene in these parasites and not to the inability for the expression of this gene. The introduction of an exogenous complete coding region from Crithidia fasciculata ODC gene inserted in an expression vector specific for trypanosomatids induces the normal expression of the foreign genetic information allowing the transformed T. cruzi to overcome the exogenous polyamine requirement for growth. The enzyme expressed in the transformed parasites has shown a considerably extended metabolic stability. The loss of ODC activity in T. cruzi might be related to the parasite adaptation to the intracellular stages of its life cycle.  相似文献   

5.
Putrescine uptake in Trypanosoma cruzi epimastigotes is 10 to 50-fold higher than in Leishmania mexicana or Crithidia fasciculata. Polyamine transport in all these trypanosomatids is an energy-dependent process strongly inhibited by the presence of 2,4-dinitrophenol or KCN. Putrescine uptake in T. cruzi and L. mexicana was markedly decreased by the proton ionophore carbonylcyanide m-chlorophenylhydrazone but it was not affected by ouabain, a Na(+)-K+ pump inhibitor. The depletion of intracellular polyamines by treatment of parasite cultures with alpha-difluoromethylornithine elicited a marked induction of putrescine uptake in L. mexicana and C. fasciculata by increasing considerably the Vmax of this process. Conversely, the uptake of putrescine in T. cruzi was essentially unchanged by the same treatment. The differential regulation of putrescine transport in T. cruzi might be related to some distinctive features of polyamine metabolism in this parasite.  相似文献   

6.
The dodecamer universal minicircle sequence is a conserved sequence present in minicircles of trypanosomatid kinetoplast DNA studied so far. This sequence is recognised by a protein named universal minicircle sequence binding protein, described for Crithidia fasciculata, involved in minicircle DNA replication. We have identified a Trypanosoma cruzi gene homologue of the Crithidia fasciculata universal minicircle sequence binding protein. Similar to the Crithidia fasciculata universal minicircle sequence binding protein, the Trypanosoma cruzi protein, named PDZ5, contains five zinc finger motifs. Pulsed field gel electrophoresis indicated that the pdz5 gene is located in the chromosomal band XX of the Trypanosoma cruzi genome. The predicted amino acid sequence of PDZ5 shows a high degree of similarity with several trypanosomatid zinc finger proteins. Specific antibody raised against Crithidia fasciculata universal minicircle sequence binding protein recognises both the recombinant and endogenous PDZ5. The complete pdz5 coding sequence cloned in bacteria expresses a recombinant PDZ5 protein that binds specifically to the universal minicircle sequence dodecamer. These data strongly suggest that PDZ5 represents a Trypanosoma cruzi universal minicircle sequence binding protein.  相似文献   

7.
Cytidine deaminase (cytidine aminohydrolase, 3.5.4.5) is present in Crithidia fasciculata (a mosquito parasite) and in Trypanosoma cruzi (a human pathogen). The enzyme from C. fasciculata deaminated both cytidine and deoxycytidine, the affinity for the former being much lower than the latter. Affinities for both substrates are equal for the T. cruzi enzyme. The production of the enzyme in C. fasciculata was significantly stimulated by the addition of a number of pyrimidine nucleosides (cytidine, uridine, 5-bromouridine, thymidine, orotidine) to the culture media. Only cytidine stimulated enzyme production in T. cruzi. The enzyme from both organisms was unstable in air, even in the frozen state. Stabilization was achieved under anaerobic conditions.  相似文献   

8.
We have previously reported that the oligosaccharides transferred in vivo from dolichol-P-P derivatives in protein N-glycosylation in trypanosomatids are devoid of glucose residues and contain 2 N-acetylglucosamine and 6, 7, or 9 mannose units depending on the species. In this respect trypanosomatids differ from wild type mammalian, plant, insect, and fungal cells in which Glc3Man9GlcNAc2 is transferred. We are now reporting that incubation of Glc1-3Man9GlcNAc2-P-P-dolichol and Man7-9GlcNAc2-P-P-dolichol with membranes of Trypanosoma cruzi, Leptomonas samueli, Crithidia fasciculata, and Blastocrithidia culicis and an acceptor hexapeptide leads to the transfer of the six above mentioned lipid-linked oligosaccharides at the same rate. Control experiments performed under similar conditions but with rat liver and Saccharomyces cerevisiae membranes showed that, as already known, Glc3Man9GlcNAc2 is preferentially transferred in the latter systems. We have also previously reported that, once transferred to protein, the oligosaccharides become transiently glucosylated in trypanosomatids. Depending on the species, protein-linked Glc1Man5-9GlcNAc2 have been transiently detected in cells incubated with [14C] glucose. We are now reporting that glucosidase activities degrading both Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 were detected in T. cruzi, L. samueli, and C. fasciculata. The enzymatic activities were associated with a membrane fraction; they had a neutral optimum pH value, and similarly to mammalian glucosidase II, the enzyme acting on the monoglucosylated substrate showed a decreased affinity when the latter contained fewer mannose residues. No glucosidase I-like enzyme acting on Glc3Man9GlcNAc2 was detected in any of the three above-mentioned protozoan species. This result is consistent with the fact that no oligosaccharides containing 3 glucose units occur in trypanosomatids.  相似文献   

9.
A range of trypanosomatids (amastigotes and cultured promastigotes of Leishmania mexicana mexicana, cultured promastigotes of L. m. amazonensis, L. donovani and L. tarentolae, culture forms of Crithidia fasciculata, Herpetomonas muscarum muscarum and H. m. ingenoplastis and procyclic trypomastigotes of Trypanosoma brucei brucei) have been surveyed for the presence of purine- and pyrimidine-metabolising enzymes. Several common features were observed, including the presence of nucleosidases, catabolic phosphorylases, phosphoribosyltransferases, kinases and cytidine deaminase and the apparent absence of AMP deaminase, anabolic purine phosphorylase and cytosine deaminase. Significant differences between species were discovered, notably in adenine and adenosine metabolism. Nucleoside phosphotransferase active on inosine was detected in insect trypanosomatids but not in L. m. mexicana.  相似文献   

10.
Interestingly, there is a major difference in turnover rate between ornithine decarboxylases (ODCs) from various trypanosomatids. ODCs from Trypanosoma brucei and Leishmania donovani are both stable proteins, whereas ODC from Crithidia fasciculata is a metabolically unstable protein in the parasite. C. fasciculata ODC is also rapidly degraded in mammalian systems, whereas the closely related L. donovani ODC is not. The degradation of C. fasciculata ODC in the mammalian systems is shown to be dependent on a functional 26 S proteasome. However, in contrast to the degradation of mammalian ODC, the degradation of C. fasciculata ODC does not involve antizyme. Instead, it appears the degradation of C. fasciculata ODC may be associated with poly-ubiquitination of the enzyme.  相似文献   

11.
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.  相似文献   

12.
Abstract Glucose consumption and catabolite production by thick suspensions of Trypanosoma cruzi, Leishmania mexicana and Crithidia fasciculata were similar under aerobic and anaerobic conditions, indicating lack of Pasteur effect. Succinate was the main product for L. mexicana and C. fasciculata ; the latter also produced similar amounts of ethanol. T. cruzi produced succinate and l -alanine to a similar extent. l -Alanine was also a major product of L. mexicana , but was neither produced, nor consumed, by C. fasciculata . Small amounts of glycerol were produced by L. mexicana and C. fasciculata , but not by T. cruzi , which had no detectable NAD-dependent sn -glycerol-3-phosphate dehydrogenase activity.  相似文献   

13.
Newly replicated duplex DNA minicircles of trypanosomal kinetoplast DNA are nicked in both their monomeric and catenated topological states, whereas mature ones are covalently sealed. The possibility that nicking may play a role during kinetoplast DNA replication by affecting the topological interconversions of monomeric DNA minicircles and catenane networks was studied here in vitro using Crithidia fasciculata DNA topoisomerase. An enzyme that catalyzes the nicking of duplex DNA circles has been purified to apparent homogeneity from C. fasciculata cell extracts. The native enzyme has a sedimentation coefficient of 6.8 S and was found to be a dimer with a protomer Mr = 60,000. Nicking of kinetoplast DNA networks by the purified enzyme inhibits their decatenation by the Crithidia DNA topoisomerase but has no effect on the catenation of monomeric DNA minicircles into networks. This differential effect on decatenation versus catenation is specific to the purified nicking enzyme. Random nicking of interlocked DNA minicircles has no detectable effect on the reversibility of the topological reaction. The potential role of Crithidia nicking enzyme in the replication of kinetoplast DNA networks in trypanosomatids is discussed.  相似文献   

14.
Leishmania tropica, Trypanosoma brucei, Trypanosoma cruzi, and Crithidia fasciculata have superoxide dismutases which are insensitive to cyanide and sensitive to peroxide and azide, properties characteristic of iron-containing superoxide dismutase. Studies on the superoxide dismutase of C. fasciculata have revealed that: 1) the enzyme is located in the cytosol; 2) isozymes exist; 3) the major superoxide dismutase isozyme (superoxide dismutase 2) has Mr approximately equal to 43,000 and consists of two equal-sized subunits, each of which contains 1.4 atoms of iron. Comparisons of the amino acid content of this crithidial superoxide dismutase with those of superoxide dismutases from other sources suggests that the crithidial enzyme is closely related to bacterial Fe-containing superoxide dismutases, and only distantly related to human Mn- and Cu,Zn-containing superoxide dismutases and to Euglena Fe-containing superoxide dismutase. Attempts are now underway to develop specific inhibitors of the trypanosomatid superoxide dismutase which may be of use in the treatment of leishmaniasis or trypanosomiasis.  相似文献   

15.
Trypanosomatid protozoa (Crithidia deanei, C. deanei aposymbiotic, C. oncopelti, C. fasciculata, C. acanthocephali, Leptomonas seymouri, L. collosoma, L. samueli, Herpetomonas samuelpessoai, H. sp., H. megaseliae, H. muscarum muscarum, Leishmania donovani, L. braziliensis, Trypanosoma cruzi, T. conorhini and T. mega) were examined for the presence of acetylornithinase (EC 3.5.1.16) and ornithine acetyltransferase (EC 2.3.1.35). As a rule, species of the genus Crithidia presented one of the two enzymes for the conversion of acetylornithine into ornithine. Crithidia fasciculata and C. acanthocephali presented acetylornithinase, while C. deanei and C. oncopelti, species harboring symbionts, presented ornithine acetyltransferase. The enzyme was absent in the aposymbiotic strain of C. deanei, which suggests that the enzyme belongs to the symbiont. Among the other trypanosomatids examined only Herpetomonas samuelpessoai presented acetylomithinase. The participation of acetylornithinase and ornithine acetyltransferase in the metabolism of trypanosomatids is discussed in the light of their nutritional requirements and possession of enzymes of the arginineornithine metabolism.  相似文献   

16.
In order to verify the applicability of biochemical methods for species identification of Trypanosomatidae, 13 species of monoxenic trypanosomatids plus the heteroxenous Trypanosoma cruzi were comparatively analyzed by three different biochemical methods. Insect trypanosomatids examined were: Crithidia acanthocephali, C. fasciculata (three varieties), C. luciliae luciliae, C. luciliae thermophila, C. deanei, C. oncopelti, Herpetomonas muscarum muscarum, H. megaseliae, H. samuelpessoai, H. mariadeanei, Leptomonas seymouri, L. collosoma, L. samueli, and Blastocrithidia culicis. Also included in the survey were aposymbiotic strains of C. deanei and C. oncopelti. Methods used were: electrophoretic profiling of endonuclease-generated fragments of k-DNA, esterase isoenzymes profiling, and polyacrylamide-gel electrophoresis (SDS-PAGE) of radioiodinated cell surface proteins. Interspecific but not intraspecific differences were detected by all three methods among the 13 monoxenic species examined. Thus, it is concluded that these methods can be successfully used, in addition to classical criteria, for species identification of insect trypanosomatids.  相似文献   

17.
Serine hydroxymethyltransferase (SHMT) was studied in several American trypanosomatids, Trypanosoma cruzi epimastigotes displaying, in contrast with T. rangeli, high enzymatic activity. Several Leishmania spp. members, including L. braziliensis, L. mexicana and L. garnhami promastigotes, under identical assay conditions, showed low enzymatic activity. The T. cruzi and leishmanial enzymes presented several different kinetic properties, and thus apparent Km for THF was 0.30 mM for the trypanosomal SHMT vs 0.60 mM for the leishmanial enzyme, while the apparent Km for serine was 0.40 mM for trypanosomal SHMT vs 0.15 mM for leishmanial enzyme. There were significant variations in the specific activity of SHMT between the several different trypanosomatids strains studied, but the meaning of these results is not clear because they showed no correlation either with taxonomy or infectivity.  相似文献   

18.
Mouse thymus thymidylate synthase has been purified to apparent electrophoretic homogeneity and compared with the enzyme from mouse tumour L1210 and Ehrlich ascites carcinoma cells. The enzyme is a dimer composed of 35,000 mol. wt monomers. Mouse thymus and tumour enzymes exhibit allosteric properties reflected by cooperative binding of both dUMP and 5-fluoro-dUMP. Activation energy for the reaction, catalyzed by thymidylate synthase from mouse tumour but not from mouse thymus, lowers at temperatures above 34 degrees C, reflecting a change of rate-limiting step in dTMP formation. MgATP at millimolar concentrations inhibits mouse thymus enzyme.  相似文献   

19.
Trypanothione disulfide [N1,N8-bis(glutathionyl)-spermidine], the physiological substrate for the chemotherapeutic target enzyme trypanothione reductase, is difficult to isolate, expensive to buy, and awkward to synthesize. Here we describe the straightforward synthesis of N,N'-bis(benzyloxycarbonyl)-L-cysteinylglycyl-3-dimethylaminopropylam ide disulfide, which is shown to be a good alternative substrate for the trypanothione reductases from Crithidia fasciculata and Trypanosoma cruzi.  相似文献   

20.
A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号