首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Avis J  Anderson GB 《Theriogenology》1988,29(2):505-512
Although methods for production of chimeras from early cleavage stages have been well established, little research has been directed toward production of genetically identical chimeric offspring. This study was designed to examine survival of blastocysts produced by aggregation of two halved eight-cell stage embryos from two different mouse strains. Four blastomeres of an eight-cell embryo from a pigmented strain were aggregated with four blastomeres of an eight-cell embryo from a nonpigmented strain. Aggregates were cultured for 48 h and transferred as blastocysts to synchronized recipients of three treatment groups. Viability was determined by examining the number of offspring produced relative to the number of blastocysts transferred. Thirty-nine pups were born from 375 transferred blastocysts (10%), with 16 pups displaying coat-color chimerism. Both nonmanipulated eight-cell embryos cultured for 48 h (P < 0.05) and chimeric blastocysts (P < 0.001) displayed lower embryo survival after transfer to recipients than noncultured, nonmanipulated blastocysts used as controls. Viability of chimeric blastocysts was also lower than that of nonmanipulated embryos cultured for the same period and transferred to the same recipients (P < 0.001). Although posttransfer survival of chimeric blastocysts was low, the birth of morphologically normal offspring demonstrated that production of chimeras from half embryos was compatible with survival. Improvements in this procedure may be useful for production of tenetically identical chimeras from outbred populations, such as those commonly found in domestic livestock species.  相似文献   

2.
Previous studies have shown that early embryos contain information that can alter the developmental fate of adjacent cells and transferred nuclei. In this report we show that a specific combination of cells from early murine embryos, a single blastomere from an eight-cell embryo placed under the zona pellucida with a two-cell embryo, results in a difference in incorporation of 3H-uridine and expression of two protein bands between the chimeric treatment group and the nonchimeric controls, a single blastomere from an eight-cell embryo in a separate zona pellucida and a two-cell embryo. The incorporation of 3H-uridine in the chimeric group and nonchimeric control group was significantly different at 45 hours after chimerization (P < .02). A stage-specific protein band (52k) on a polyacrylamide gel detected with fluorography was found to be qualitatively different (present more often; P < .01) and another stage-specific protein band (48k) was found to be quantitatively different (more protein; P equals; .07) in the chimeric treatment vs. the nonchimeric controls at 45 hours after chimerization. These results suggest communication between the cells resulting in a change in their incorporation of uridine and protein synthetic profiles.  相似文献   

3.
 During the normal development of echinoids, an animal cap consisting of 8 mesomeres in a 16-cell stage embryo differentiates exclusively into ectoderm. Micromeres in an embryo at the same stage differentiate into primary mesenchyme cells (PMC) and coelomic pouch constituents. An animal cap and a quartet of micromeres were isolated from a 16-cell stage embryo and recombined to make a chimeric embryo devoid of presumptive endoderm and secondary mesenchyme cells (SMC). The PMC in the chimeric embryo were completely removed at the mesenchyme blastula stage. The PMC-depleted chimeric embryos formed an archenteron derived from the mesomeres. Some secondary mesenchyme-like cells (induced SMC) were released from the archenteron tip. A considerable fraction of the induced SMC formed the typical mesenchyme pattern after migrating into the vegetal region, synthesized skeletogenic mesenchyme cell-surface protein (msp130) and produced the larval skeleton. These findings indicate that induced SMC derived from the presumptive ectoderm have the same nature as natural SMC in both the timing of their release and their skeletogenic potential expressed in the absence of PMC. Received: 14 November 1996 / Accepted: 30 December 1996  相似文献   

4.
Chimeric or entirely embryonic stem (ES) cell-derived mice ("ES mice") can be produced by injecting ES cells into diploid (2n) or tetraploid (4n) host blastocysts, respectively. Usually, between 10 and 15 ES cells are injected into the host blastocyst, but it is not clear how many of the injected cells contribute to the somatic lineages, thus serve as "founder cells" of the embryo proper. We have used genetically labeled ES cells to retrospectively determine the number of founder ES cells that generate the somatic lineages of chimeric and of ES mice. ES cell clones individually labeled with provirus were mixed in equal numbers and injected into 2n or 4n blastocysts to generate chimeric or ES mice. Southern analysis of DNA from the resulting animals indicated that the somatic lineages were most often derived from one or two and sometimes from up to three founder ES cells. The number of founder cells was independent of the total number of cells injected into the host blastocysts. Our results are consistent with the notion that constraints of the host embryo restrict the number of ES cells that can contribute to a chimeric or an ES mouse.  相似文献   

5.
目的:通过建立慢病毒载体感染猪胚胎体系实现胚胎标记,进而研究不同发育阶段猪孤雌胚胎之间的嵌合能力,为进一步研究猪早期胚胎发育以及细胞分化奠定基础.方法:首先,通过显微注射的方法把2×109I.U./ml、2×108I.U./ml和2×107I.U./ml三个梯度的表达绿色荧光的慢病毒载体分别注射到猪1-细胞胚胎和2-细胞胚胎的透明带下,进行胚胎的GFP转基因标记,在荧光显微镜下观察比较卵裂率、阳性胚胎率、囊胚率、阳性囊胚率和囊胚细胞数.然后,采用凹窝聚合法对同步发育胚胎在不同阶段(2-细胞,4-细胞,8-细胞)进行嵌合,2-细胞胚胎与不同发育阶段(2-细胞、4-细胞、8-细胞)胚胎进行嵌合以及2-细胞胚胎卵裂球互换制作嵌合体胚胎,发育到囊胚时在荧光显微镜下检测胚胎的嵌合状态.结果:2×109I.U./ml的慢病毒感染猪2-细胞胚胎组中,体外受精和孤雌胚胎感染阳性率( 80.00%、76.36%)和阳性囊胚率(90.74%、89.56%)都显著高于其它滴度组(P<0.05),另外,慢病毒感染的两种胚胎与对照组对卵裂率、囊胚率和囊胚细胞数三个指标没有显著影响(P>0.05).2-细胞胚胎之间嵌合囊胚率和2-细胞卵裂球互换嵌合囊胚率( 53.85%、62.50%)显著高于2-细胞胚胎与4-细胞胚胎的嵌合率(18.60%,P<0.05),在同步发育胚胎中8-细胞胚胎之间的嵌合率(75.00%)高于4-细胞胚胎之间和2-细胞胚胎之间的嵌合率( 65.00%、53.80%).结论:2×109I.U./ml的慢病毒感染2-细胞期胚胎效率最高,另外,慢病毒感染对猪胚胎发育没有明显影响.8-细胞间的嵌合率比较高;发育同步胚胎间的嵌合率高于发育非同步胚胎间的嵌合率.  相似文献   

6.
In present study, chicken primordial germ cells (PGCs) were transferred into quail embryos to investigate the development of these germ cells in quail ovary. Briefly, 2 microl of chicken embryonic blood (stage 14) or about 100 purified circulating PGCs were transferred into quail embryo. Contribution of chicken PGCs were detected in gonads of chimeric quail embryos (stage 28) by immunocytochemical staining of cell surface antigen SSEA-1, and by in situ hybridization (ISH) with female chicken specific DNA probe. As a result, 52.0+/-43.2 (n=18) and 42.7+/-27.3 (n=17) chicken PGCs were found in the gonads of chimeric quail embryo that was injected with chicken embryonic blood (stage 14) and about 100 purified circulating PGCs, respectively. Furthermore, the ovaries of 81.8% (9/11) 12 days post incubation (dpi) chimeric quail embryos were observed with a mean of 457.6+/-237.1 female chicken PGCs-derived oogonia scattered in ovarian cortex area. In 9 out of 12 newly hatched and one week old chimeric quail chicks, on average of 2883.0+/-1924.1 primary oocytes and 3 follicles derived from chicken PGCs were found, respectively. The present results suggest that chicken female PGCs are able to migrate, colonize, proliferate and differentiate into oogonia, primary oocytes in chimeric quail ovary.  相似文献   

7.
Chimeric embryos were produced by aggregation of parthenogenetic (Japanese Red breed) and in vitro fertilized (Holstein breed) bovine embryos at the Yamaguchi Research Station in Japan and by aggregation of parthenogenetic (Red Angus breed) and in vitro fertilized (Holstein breed) embryos at the St. Gabriel Research Station in Louisiana. After embryo reconstruction, live offspring were produced at each station from transplanting these embryos. The objective of this joint study was to evaluate the developmental capacity of reconstructed parthenogenetic and in vitro fertilized bovine embryos. In experiment I, chimeric embryos were constructed: by aggregation of four 8‐cell (demi‐embryo) parthenogenetic and four 8‐cell stage (demi‐embryo) IVF‐derived blastomeres (method 1) and by aggregation of a whole parthenogenetic embryo (8‐cell stage) and a whole IVF‐derived embryo (8‐cell stage) (method 2). Similarly in experiment II, chimeric embryos were constructed by aggregating IVF‐derived blastomeres with parthenogenetic blsatomeres. In this experiment, three categories of chimeric embryos with different parthenogenetic IVF‐derived blastomere ratios (2:6; 4:4, and 6:2) were constructed from 8‐cell stage bovine embryos. In experiment III, chimeric embryos composed of four 8‐cell parthenogenetic and two 4‐cell IVF‐derived blastomeres or eight 16‐cell parthenogenetic and four 8‐cell IVF‐derived blastomeres were constructed. Parthenogenetic demi‐embryos were aggregated with sexed (male) IVF demi‐embryos to produce chimeric blastocysts (experiment IV). In the blastocyst stage, hatching and hatched embryos were karyotyped. In experiment V, chimeric embryos that developed to blastocysts (zona‐free) were cryopreserved in ethylene glycol (EG) plus trehalose (T) with different concentrations of polyvinylpyrrolidone (PVP; 5%, 7.5%, and 10%). In experiment I, the aggregation rate of the reconstructed demi‐embryos cultured in vitro without agar embedding was significantly lower than with agar embedding (53% for 0% agar, 93% for 1% agar, and 95% for 1.2% agar, respectively). The aggregation was also lower when the aggregation resulted from a whole parthenogenetic and IVF‐derived embryos cultured without agar than when cultured with agar (70% for 0% agar, 94% for 1% agar, and 93% for 1.2% agar, respectively). The development rate to blastocysts, however, was not different among the treatments. In experiment II, the developmental rates to the morula and blastocyst stages were 81%, 89%, and 28% for the chimeric embryos with parthenogenetic:IVF blastomere ratios of 2:6, 4:4, and 6:2, respectively. In experiment III, the developmental rate to the morula and blastocyst stages was 60% and 65% for the two 4‐cell and four 8‐cell chimeric embryos compared with 10% for intact 8‐cell parthenogenetic embryos and 15% for intact 16‐cell parthenogenetic embryos. To verify participation of parthenogenetic and the cells derived from the male IVF embryos in blastocyst formation, 51 embryos (hatching and hatched) were karyotyped, resulting in 27 embryos having both XX and XY chromosome plates in the same sample, 14 embryos with XY and 10 embryos with XX. The viability and the percentage of zona‐free chimeric embryos at 24 hr following cryopreservation in EG plus T with 10% PVP were significantly greater than those cryopreserved without PVP (89% vs. 56%). Pregnancies were diagnosed in both stations after the transfer of chimeric blastocysts. Twin male (stillbirths) and single chimeric calves were delivered at the Yamaguchi station, with each having both XX and XY chromosomes detected. Three pregnancies resulted from the transferred 40 chimeric embryos at the Louisiana station. Two pregnancies were lost prior to 4 months and one phenotypically‐ chimeric viable male calf was born. We conclude that the IVF‐derived blastomeres were able to stimulate the development of bovine parthenogenetic blastomeres and that the chimeric parthenogenetic bovine embryos were developmentally competent. Mol. Reprod. Dev. 53:159–170, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
This study was designed to assess the degree of cell mixing that occurs during the early development of the mouse embryo, and thus provide information which is important in relation to the current theories of differentiation. Previous studies of this nature have involved either chimeric composites, or have only followed a very limited number of cells in the embryo. Here the products of one of the 4-cell stage blastomeres have been labeled with tritiated thymidine, at a level which allows their descendants to be identified three or four cell divisions later, and recombined with the remaining blastomeres of the same embryo. After fixing and sectioning of the embryos at the blastocyst stage the locations of the labelled cells have been analyzed to assess the degree of clumping that they display. A significant tendency for the products of this one 4-cell stage blastomere to be confined to a single area in the blastocyst is demonstrated. This indicates that there is little marked cell movement during the observation period. The relevance of these results to current knowledge of blastocyst development is discussed.  相似文献   

9.
Microsurgery and embryo transfer of mammalian embryos have many possible uses for propagation of domestic and endangered species. Techniques and applications of embryo splitting, chimeric cloning, and production of fetal-placental chimeras are discussed, with an emphasis on interspecies transfers.  相似文献   

10.
11.
We have constructed and characterized a Rous sarcoma virus-based retroviral vector with the host range of the amphotropic murine leukemia virus (MLV). The chimeric retroviral genome was created by replacing the env coding region in the replication-competent retroviral vector RCASBP(A) with the env region from an amphotropic MLV. The recombinant vector RCASBP-M(4070A) forms particles containing MLV Env glycoproteins. The vector replicates efficiently in chicken embryo fibroblasts and is able to transfer genes into mammalian cells. Vector stocks with titers exceeding 10(6) CFU/ml on mammalian cells can be easily prepared by passaging transfected chicken embryo fibroblasts. Since the vector is inherently defective in mammalian cells, it appears to have the safety features required for gene therapy.  相似文献   

12.
The development of an efficient system for the creation of transgenicrice plants from immature embryo tissue was described previously.That system resulted in the generation of clonal plants, probablyderived from a single cell or a very small number of cells.Creation of chimeric cereal plants is of interest in studiesdirected towards the elucidation of developmental pathways.We were able to take advantage of the relative ease with whichrice axillary buds, in a germinating seedling, can from embryogeniccallus or be induced to form multiple tillers. Particle bombardmentof such tissues, at various stages of development, resultedin the recovery of transgenic plants that were chimeric. Thecreation, origin and development of chimeric cereal plants canthus be studied and new insight into fundamental aspects ofearly plant development can be obtained. This regeneration/transformationsystem is compared with a previously developed protocol involvinggene transfer into immature embryos which resulted in the exclusiverecovery of clonal plants. It is also compared and contrastedwith a system described earlier for soybean engineering thatresulted on the recovery both chimeric and clonal plants.Copyright1995, 1999 Academic Press Oryza sativa, transformation, chimeric plant phenotypes, development, ß-glucuronidase, particle bombardment  相似文献   

13.
国家自然科学基金(No.30971003)、云南省基础研究重点项目(No.2007c0012z)和北京协和医学院博士创新基金资助项目  相似文献   

14.
目的:完善和规范基因剔除小鼠技术体系的关键技术环节,建立一套高效的嵌合体制备体系。方法:优化胚胎干细胞(ES细胞)的基本培养条件;应用条件培养液筛选、富集高嵌合潜能的ES细胞;成熟嵌合体的制备技术;改变胚胎的移植方式,改善受体的生理状态。结果:ES细胞基本培养条件的优化及条件培养液的筛选保持了ES细胞的整体高嵌合潜能,嵌合体制备技术得以成熟,胚胎移植方式的改变提高了移植胚胎的产仔率,这些措施大大提高了嵌合体的制备效率。结论:通过对基因剔除小鼠技术体系的关键技术环节进行优化和改进,建立了一套高效的嵌合体制备程序,为基因剔除小鼠服务体系的开展打下了坚实的基础。  相似文献   

15.
We investigated the inductive signals originating from the vegetal blastomeres of embryos of the sand dollar Peronella japonica, which is the only direct developing echinoid species that forms micromeres. To investigate the inductive signals, three different kinds of experimental embryos were produced: micromere-less embryos, in which all micromeres were removed at the 16-cell stage; chimeric embryos produced by an animal cap (eight mesomeres) recombined with a micromere quartet isolated from a 16-cell stage embryo; and chimeric embryos produced by an animal cap recombined with a macromere-derived layer, the veg1 or veg2 layer, isolated from a 64-cell stage embryo. Novel findings obtained from this study of the development of these embryos are as follows. Micromeres lack signals for endomesoderm specification, but are the origin of a signal establishing the oral–aboral (O–Ab) axis. Some non-micromere blastomeres, as well as micromeres, have the potential to form larval skeletons. Macromere descendants have endomesoderm-inducing potential. Based on these results, we propose the following scenario for the first step in the evolution of direct development in echinoids: micromeres lost the ability to send a signal endomesoderm induction so that the archenteron was formed autonomously by macromere descendants. The micromeres retained the ability to form larval spicules and to establish the O–Ab axis.  相似文献   

16.
The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.  相似文献   

17.
18.
To date, cloned farm animals have been produced by nuclear transfer from embryonic, fetal, and adult cell types. However, mice completely derived from embryonic stem (ES) cells have been produced by aggregation with tetraploid embryos. The objective of the present study was to generate offspring completely derived from bovine ES-like cells. ES-like cells isolated from the inner cell mass of in vitro-produced embryos were aggregated with tetraploid bovine embryos generated by electrofusion at the 2-cell stage. A total of 77 embryo aggregates produced by coculture of two 8-cell-stage tetraploid embryos and a clump of ES-like cells were cultured in vitro. Twenty-eight of the aggregates developed to the blastocyst stage, and 12 of these were transferred to recipient cows. Six calves representing 2 singletons and 2 sets of twins were produced from the transfer of the chimeric embryos. Microsatellite analysis for the 6 calves demonstrated that one calf was chimeric in the hair roots and the another was chimeric in the liver. However, unfortunately, both of these calves died shortly after birth. Two of the placentae from the remaining pregnancies were also chimeric. These results indicate that the bovine ES-like cells used in these studies were able to contribute to development.  相似文献   

19.
Embryogenesis in transgenic Arabidopsis plants with GFP:mTn, a chimeric fusion of soluble shifted green fluorescent protein and a mouse actin binding domain, was studied. Confocal laser scanning microscopy was used to determine patterns of formation and cellular responses during asymmetric cell division. Before such cells divide, the nucleus moves to the position where new cell walls are to be formed. The apicalbasal axis of the embryo develops mainly at the zygote to octant stage, and these events are associated with asymmetric divisions of the zygote and hypophyseal cells. Formation of the radial axis is established from the dermatogen to the globular-stage embryo via tangential cell division within the upper tiers. Bilateral symmetry of the embryo primarily happens at the triangular stage through zig-zag cell divisions of initials of the cotyledonary primordia. All stages of embryogenesis are described in detail here.  相似文献   

20.
In previous experiments in our laboratories, chickens that are chimeric in their gamete, melanocyte, and blood cell populations have been produced by injection of dispersed stage X blastodermal donor cells into the subgerminal cavity of stage X recipient embryos. In some experiments, donor cells were transfected with reporter gene constructs prior to injection as a preliminary step in the production of transgenic birds. Chimerism was assessed by test mating, observation of plumage, and DNA fingerprinting. Methods were sought that would provide a relatively rapid analysis of the spatial distribution of descendants of donor cells in chimeras to assess the efficacy of various methods of chimera construction. To date, the sex of donor and recipient embryos was not known and, therefore, numerous mixed sex chimeras must have been constructed by chance, since donor cells were usually collected from several embryos rather than from individual embryos. The presence of female-derived cells was determined by in situ hybridization using a W-chromosome-specific DNA probe, using smears of washed erythrocytes from 16 phenotypically male chimeric chickens ranging in age from 4 days to 42 months posthatching. The proportion of female cells detected in the erythrocyte samples was zero (eight samples) or very low (0.020-0.083%), although 1% of the erythrocytes from a phenotypically male chick that was killed 4 days after hatch were female-derived. The low proportions of female-derived cells were surprising, considering that most of these chimeras had been produced by the injection of cells pooled from several donor embryos and most recipients had been exposed to gamma irradiation prior to injection, thus dramatically enhancing the level of incorporation of donor cells into the resulting chimeras. By contrast, 0-100% of the erythrocytes were female-derived in blood samples taken at 10 days of incubation from the chorioallantois of seven phenotypically normal male embryos that resulted from the injection of blastodermal cells pooled from five embryos into irradiated recipient embryos. Approximately 70% of the erythrocytes in a blood sample from a phenotypically normal female chimeric embryo were female-derived, and 100% of the erythrocytes examined from an intersex embryo bearing a right testis and a left ovary were female-derived. These results indicate that female-derived cells can contribute to the formation of erythropoietic tissue during the early development of what will become a phenotypically male chimeric embryo. It would appear, therefore, that female-derived cells are blocked in development or destroyed, or certain male-female combinations of cells may be lethal prior to hatching.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号