首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Drosophila segment polarity gene product Porcupine (Porc) was first identified as being necessary for processing Wingless (Wg), a Drosophila Wnt (Wnt) family member. Mouse and Xenopus homologs of porc (Mporc and Xporc) were identified and found to encode endoplasmic reticulum (ER) proteins with multiple transmembrane domains. In contrast with porc, four different types of Mporc and Xporc mRNA (A-D) are generated from a single gene by alternative splicing. Mporc mRNA is differentially expressed during embryogenesis and in various adult tissues, demonstrating that the alternative splicing is regulated to synthesize the specific types of Mporc. In transfected mammalian cells, all Mporc types affect the processing of mouse Wnt 1, 3A, 4, 6, and 7B but not 5A. Furthermore, all Mporc types are co-immunoprecipitated with various Wnt proteins. These results suggest that Mporc may function as a chaperone-like molecule for Wnt. Interestingly, all Mporc types can substitute for Porc, as they are able to rescue the phenotypes of Drosophila porc embryos. Consistent with this observation, Mporc, like Porc, modifies the processing of Wg expressed in mammalian cells. These results demonstrate that the porc gene family encodes the multitransmembrane ER proteins, which are evolutionarily well conserved and involved in processing the Wnt family.  相似文献   

2.
Drosophila porcupine (porc) encodes an ER membrane protein that is required for the processing of the Drosophila Wnt family. Homologs of porc have been identified in various multicellular organisms and have been implicated in the biosynthesis of Wnt proteins. In contrast to Drosophila, vertebrates generate four different porc mRNAs (A-D) by alternative splicing. Murine porcD (MporcD) mRNA levels transiently increase during the neuroectodermal differentiation of P19 cells, but diminish during mesodermal differentiation. P19 cells constitutively expressing mouse porcA (MporcA), but not MporcD, undergo apoptosis by the induction of neuroectodermal differentiation. Meanwhile, P19 cells constitutively expressing MporcD, but not MporcA, do not adopt mesodermal cell morphology and fail to express myf-5 when induced to mesodermal differentiation. These results therefore demonstrate that the alternative splicing of Mporc is regulated in a cell-type specific manner, and the resulting Mporc isoforms have different functions in the neuroectodermal and mesodermal differentiation of P19 cells.  相似文献   

3.
Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila.   总被引:3,自引:0,他引:3  
Wingless (Wg) protein is a founding member of the Wnt family of secreted proteins which have profound organizing roles in animal development. Two members of the Frizzled (Fz) family of seven-pass transmembrane proteins, Drosophila Fz and Fz2, can bind Wg and are candidate Wg receptors. However, null mutations of the fz gene have little effect on Wg signal transduction and the lack of mutations in the fz2 gene has thus far prevented a rigorous examination of its role in vivo. Here we describe the isolation of an amber mutation of fz2 which truncates the coding sequence just after the amino-terminal extracellular domain and behaves genetically as a loss-of-function allele. Using this mutation, we show that Wg signal transduction is abolished in virtually all cells lacking both Fz and Fz2 activity in embryos as well as in the wing imaginal disc. We also show that Fz and Fz2 are functionally redundant: the presence of either protein is sufficient to confer Wg transducing activity on most or all cells throughout development. These results extend prior evidence of a ligand-receptor relationship between Wnt and Frizzled proteins and suggest that Fz and Fz2 are the primary receptors for Wg in Drosophila.  相似文献   

4.
Wnt members act as morphogens essential for embryonic patterning and adult homeostasis. Currently, it is still unclear how Wnt secretion and its gradient formation are regulated. In this study, we examined the roles of N-glycosylation and lipidation/acylation in regulating the activities of Wingless (Wg), the main Drosophila Wnt member. We show that Wg mutant devoid of all the N-glycosylations exhibits no major defects in either secretion or signaling, indicating that N-glycosylation is dispensable for Wg activities. We demonstrate that lipid modification at Serine 239 (S239) rather than that at Cysteine 93 (C93) plays a more important role in regulating Wg signaling in multiple developmental contexts. Wg S239 mutant exhibits a reduced ability to bind its receptor, Drosophila Frizzled 2 (dFz2), suggesting that S239 is involved in the formation of a Wg/receptor complex. Importantly, while single Wg C93 or Wg S239 mutants can be secreted, removal of both acyl groups at C93 and S239 renders Wg incapable of reaching the plasma membrane for secretion. These data argue that lipid modifications at C93 and S239 play major roles in Wg secretion. Further experiments demonstrate that two acyl attachment sites in the Wg protein are required for the interaction of Wg with Wntless (Wls, also known as Evi or Srt), the key cargo receptor involved in Wg secretion. Together, our data demonstrate the in vivo roles of N-glycosylation and lipid modification in Wg secretion and signaling.  相似文献   

5.
Casein kinase I (CKI) was recently reported as a positive regulator of Wnt signaling in vertebrates and Caenorhabditis elegans. To elucidate the function of Drosophila CKI in the wingless (Wg) pathway, we have disrupted its function by double-stranded RNA-mediated interference (RNAi). While previous findings were mainly based on CKI overexpression, this is the first convincing loss-of-function analysis of CKI. Surprisingly, CKIalpha- or CKIepsilon-RNAi markedly elevated the Armadillo (Arm) protein levels in Drosophila Schneider S2R+ cells, without affecting its mRNA levels. Pulse-chase analysis showed that CKI-RNAi stabilizes Arm protein. Moreover, Drosophila embryos injected with CKIalpha double-stranded RNA showed a naked cuticle phenotype, which is associated with activation of Wg signaling. These results indicate that CKI functions as a negative regulator of Wg/Arm signaling. Overexpression of CKIalpha induced hyper-phosphorylation of both Arm and Dishevelled in S2R+ cells and, conversely, CKIalpha-RNAi reduced the amount of hyper-modified forms. His-tagged Arm was phosphorylated by CKIalpha in vitro on a set of serine and threonine residues that are also phosphorylated by Zeste-white 3. Thus, we propose that CKI phosphorylates Arm and stimulates its degradation.  相似文献   

6.
The Wingless (Wg)/Wnt signaling pathway regulates a myriad of developmental processes and its malfunction leads to human disorders including cancer. Recent studies suggest that casein kinase I (CKI) family members play pivotal roles in the Wg/Wnt pathway. However, genetic evidence for the involvement of CKI family members in physiological Wg/Wnt signaling events is lacking. In addition, there are conflicting reports regarding whether a given CKI family member functions as a positive or negative regulator of the pathway. Here we examine the roles of seven CKI family members in Wg signaling during Drosophila limb development. We find that increased CKIepsilon stimulates whereas dominant-negative or a null CKIepsilon mutation inhibits Wg signaling. In contrast, inactivation of CKIalpha by RNA interference (RNAi) leads to ectopic Wg signaling. Interestingly, hypomorphic CKIepsilon mutations synergize with CKIalpha RNAi to induce ectopic Wg signaling, revealing a negative role for CKIepsilon. Conversely, CKIalpha RNAi enhances the loss-of-Wg phenotypes caused by CKIepsilon null mutation, suggesting a positive role for CKIalpha. While none of the other five CKI isoforms can substitute for CKIalpha in its inhibitory role in the Wg pathway, several CKI isoforms including CG12147 exhibit a positive role based on overexpression. Moreover, loss of Gilgamesh (Gish)/CKIgamma attenuates Wg signaling activity. Finally, we provide evidence that several CKI isoforms including CKIalpha and Gish/CKIgamma can phosphorylate the Wg coreceptor Arrow (Arr), which may account, at least in part, for their positive roles in the Wg pathway.  相似文献   

7.
Secretion of Wnt ligands requires Evi, a conserved transmembrane protein   总被引:8,自引:0,他引:8  
Wnt signaling pathways are important for multiple biological processes during development and disease. Wnt proteins are secreted factors that activate target-gene expression in both a short- and long-range manner. Currently, little is known about how Wnts are released from cells and which factors facilitate their secretion. Here, we identify a conserved multipass transmembrane protein, Evenness interrupted (Evi/Wls), through an RNAi survey for transmembrane proteins involved in Drosophila Wingless (Wg) signaling. During development, evi mutants have patterning defects that phenocopy wg loss-of-function alleles and fail to express Wg target genes. evi's function is evolutionarily conserved as depletion of its human homolog disrupts Wnt signaling in human cells. Epistasis experiments and clonal analysis place evi in the Wg-producing cell. Our results show that Wg is retained by evi mutant cells and suggest that evi is the founding member of a gene family specifically required for Wg/Wnt secretion.  相似文献   

8.
Port F  Hausmann G  Basler K 《EMBO reports》2011,12(11):1144-1152
Wnt proteins are secreted, lipid-modified glycoproteins that control animal development and adult tissue homeostasis. Secretion of Wnt proteins is at least partly regulated by a dedicated machinery. Here, we report a genome-wide RNA interference screen for genes involved in the secretion of Wingless (Wg), a Drosophila Wnt. We identify three new genes required for Wg secretion. Of these, Emp24 and Eclair are required for proper export of Wg from the endoplasmic reticulum (ER). We propose that Emp24 and Eca act as specific cargo receptors for Wg to concentrate it in forming vesicles at sites of ER export.  相似文献   

9.
The Drosophila gene product Wingless (Wg) is a secreted glycoprotein and a member of the Wnt gene family. Genetic analysis of Drosophila epidermal development has defined a putative paracrine Wg signalling pathway involving the zeste-white 3/shaggy (zw3/sgg) gene product. Although putative components of Wg- (and by inference Wnt-) mediated signalling pathways have been identified by genetic analysis, the biochemical significance of most factors remains unproven. Here we show that in mouse 10T1/2 fibroblasts the activity of glycogen synthase kinase-3 (GSK-3), the murine homologue of Zw3/Sgg, is inactivated by Wg. This occurs through a signalling pathway that is distinct from insulin-mediated regulation of GSK-3 in that Wg signalling to GSK-3 is insensitive to wortmannin. Additionally, Wg-induced inactivation of GSK-3 is sensitive to both the protein kinase C (PKC) inhibitor Ro31-8220 and prolonged pre-treatment of 10T1/2 fibroblasts with phorbol ester. These findings provide the first biochemical evidence in support of the genetically defined pathway from Wg to Zw3/Sgg, and suggest a previously uncharacterized role for a PKC upstream of GSK-3/Zw3 during Wnt/Wg signal transduction.  相似文献   

10.
11.
12.
Pattern formation in developing animals requires that cells exchange signals mediated by secreted proteins. How these signals spread is still unclear. It is generally assumed that they reach their target site either by diffusion or active transport (reviewed in [1] [2]). Here, we report an alternative mode of transport for Wingless (Wg), a member of the Wnt family of signaling molecules. In embryos of the fruit fly Drosophila, the wingless (wg) gene is transcribed in narrow stripes of cells abutting the source of Hedgehog protein. We found that these cells or their progeny are free to roam towards the anterior. As they do so, they no longer receive the Hedgehog signal and stop transcribing wg. The cells leaving the expression domain retain inherited Wg protein in secretory vesicles, however, and carry it forwards over a distance of up to four cell diameters. Experiments using a membrane-tethered form of Wg showed that this mechanism is sufficient to account for the normal range of Wg. Nevertheless, evidence exists that Wg can also reach distant target cells independently of protein inheritance, possibly by restricted diffusion. We suggest that both transport mechanisms operate in wild-type embryos.  相似文献   

13.
Wnt signals control cell fate decisions and orchestrate cell behavior in metazoan animals. In the fruit fly Drosophila, embryos defective in signaling mediated by the Wnt protein Wingless (Wg) exhibit severe segmentation defects. The Drosophila segment polarity gene naked cuticle (nkd) encodes an EF hand protein that regulates early Wg activity by acting as an inducible antagonist. Nkd antagonizes Wg via a direct interaction with the Wnt signaling component Dishevelled (Dsh). Here we describe two mouse and human proteins, Nkd1 and Nkd2, related to fly Nkd. The most conserved region among the fly and vertebrate proteins, the EFX domain, includes the putative EF hand and flanking sequences. EFX corresponds to a minimal domain required for fly or vertebrate Nkd to interact with the basic/PDZ domains of fly Dsh or vertebrate Dvl proteins in the yeast two-hybrid assay. During mouse development, nkd1 and nkd2 are expressed in multiple tissues in partially overlapping, gradient-like patterns, some of which correlate with known patterns of Wnt activity. Mouse Nkd1 can block Wnt1-mediated, but not beta-catenin-mediated, activation of a Wnt-dependent reporter construct in mammalian cell culture. Misexpression of mouse nkd1 in Drosophila antagonizes Wg function. The data suggest that the vertebrate Nkd-related proteins, similar to their fly counterpart, may act as inducible antagonists of Wnt signals.  相似文献   

14.
15.
The dachsous (ds) gene encodes a member of the cadherin family involved in the non-canonical Wnt signaling pathway that controls the establishment of planar cell polarity (PCP) in Drosophila. ds is the only known cadherin gene in Drosophila with a restricted spatial pattern of expression in imaginal discs from early stages of larval development. In the wing disc, ds is first expressed distally, and later is restricted to the hinge and lateral regions of the notum. Flies homozygous for strong ds hypomorphic alleles display previously uncharacterized phenotypes consisting of a reduction of the hinge territory and an ectopic notum. These phenotypes resemble those caused by reduction of the canonical Wnt signal Wingless (Wg) during early wing disc development. An increase in Wg activity can rescue these phenotypes, indicating that Ds is required for efficient Wg signaling. This is further supported by genetic interactions between ds and several components of the Wg pathway in another developmental context. Ds and Wg show a complementary pattern of expression in early wing discs, suggesting that Ds acts in Wg-receiving cells. These results thus provide the first evidence for a more general role of Ds in Wnt signaling during imaginal development, not only affecting cell polarization but also modulating the response to Wg during the subdivision of the wing disc along its proximodistal (PD) axis.  相似文献   

16.
17.
Members of the Wg/Wnt family provide key intercellular signals during embryonic development and in the maintenance of homeostatic processes, but critical aspects of their signal transduction pathways remain controversial. We have found that canonical Wg signaling in Drosophila involves distinct initiation and amplification steps, both of which require Arrow/LRP. Expressing a chimeric Frizzled2-Arrow protein in flies that lack endogenous Wg or Arrow showed that this construct functions as an activated Wg receptor but is deficient in signal amplification. In contrast, a chimeric Arrow protein containing the dimerization domain of Torso acted as a potent amplifier of Wg signaling but could not initiate Wg signaling on its own. The two chimeric proteins synergized, so that their co-expression largely reconstituted the signaling levels achieved by expressing Wg itself. The amplification function of Arrow/LRP appears to be particularly important for long-range signaling, and may reflect a general mechanism for potentiating signals in the shallow part of a morphogen gradient.  相似文献   

18.
The dishevelled (dsh) gene family encodes cytoplasmic proteins that have been implicated in Wnt/Wingless (Wg) signaling. To demonstrate functional conservation of Dsh family proteins, two mouse homologs of Drosophila Dsh, Dvl-1 and Dvl-2, were biochemically characterized in mouse and Drosophila cell culture systems. We found that treatment with a soluble Wnt-3A leads to hyperphosphorylation of Dvl proteins and a concomitant elevation of the cytoplasmic beta-catenin levels in mouse NIH3T3, L, and C57MG cells. This coincides well with our finding in a Drosophila wing disc cell line, clone-8, that Wg treatment induced hyperphosphorylation of Dsh (Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., and Nusse, R. (1995) Genes Dev. 9, 1087-1097). Furthermore, we showed that mouse Dvl proteins affect downstream components of Drosophila Wg signaling as Dsh does; overexpression of Dvl proteins in clone-8 cells results in elevation of Armadillo (Drosophila homolog of beta-catenin) and Drosophila E-cadherin levels, hyperphosphorylation of Dvl proteins themselves, and inhibition of Zeste-White3 kinase-mediated phosphorylation of a microtubule-binding protein, Tau. In addition, casein kinase II was shown to coimmunoprecipitate with Dvl proteins, and Dvl proteins were phosphorylated in these immune complexes. These results are direct evidence that Dsh family proteins mediate a set of conserved biochemical processes in the Wnt/Wg signaling pathway.  相似文献   

19.
The tumor suppressor adenomatous polyposis coli (APC) negatively regulates Wingless (Wg)/Wnt signal transduction by helping target the Wnt effector beta-catenin or its Drosophila homologue Armadillo (Arm) for destruction. In cultured mammalian cells, APC localizes to the cell cortex near the ends of microtubules. Drosophila APC (dAPC) negatively regulates Arm signaling, but only in a limited set of tissues. We describe a second fly APC, dAPC2, which binds Arm and is expressed in a broad spectrum of tissues. dAPC2's subcellular localization revealed colocalization with actin in many but not all cellular contexts, and also suggested a possible interaction with astral microtubules. For example, dAPC2 has a striking asymmetric distribution in neuroblasts, and dAPC2 colocalizes with assembling actin filaments at the base of developing larval denticles. We identified a dAPC2 mutation, revealing that dAPC2 is a negative regulator of Wg signaling in the embryonic epidermis. This allele acts genetically downstream of wg, and upstream of arm, dTCF, and, surprisingly, dishevelled. We discuss the implications of our results for Wg signaling, and suggest a role for dAPC2 as a mediator of Wg effects on the cytoskeleton. We also speculate on more general roles that APCs may play in cytoskeletal dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号