共查询到20条相似文献,搜索用时 15 毫秒
1.
The building of protein structures from alpha-carbon coordinates 总被引:3,自引:0,他引:3
P E Correa 《Proteins》1990,7(4):366-377
A procedure for the construction of complete protein structures from only alpha-carbon coordinates is described. This involves building the backbone by sequential addition of Pro, Gly, or Ala residues. This main chain structure is then refined using molecular dynamics. Side chains are constructed by sequential addition of atoms with intermediate molecular dynamics refinement. For alpha lytic protease (a structure that is mostly beta sheet) a backbone root mean square deviation (RMSD) of 0.19 A and an overall RMSD of 1.24 A from the crystallographic coordinates are attained. For troponin C (67% alpha-helix), where the coordinates are available only for the alpha-carbons, a backbone RMSD of 0.41 A and an overall RMSD of 1.68 A are attained (fits kindly provided by Dr. Michael James and Natalie Strynadka). For flavodoxin a backbone RMSD of 0.49 A and an overall RMSD of 1.64 A were attained. 相似文献
2.
3.
We use LINUS (the "Local Independently Nucleated Units of Structure"), a procedure developed by Srinivasan and Rose, to provide a physical interpretation of and predict the secondary structures of proteins. The secondary structure type at a given site is identified by the largest conformational bias during short simulations. We examine the rate of successful prediction as a function of temperature and the interaction window. At high temperatures, there is a large propensity for the establishment of beta-strands whereas alpha-helices appear only when the temperature is lower than a certain threshold value. It is found that there exists an optimal temperature at which the correct secondary structures are predicted most accurately. We find that this temperature is close to the peak temperature of the specific heat. Changing the interaction window or carrying out longer simulations approaching equilibrium lead to little change in the optimal success rate. Our findings are in accord with the observation by Srinivasan and Rose that the secondary structures are mainly determined by local interactions and appear in the early stage of folding. 相似文献
4.
J P Scheerlinck I Lasters M Claessens M De Maeyer F Pio P Delhaise S J Wodak 《Proteins》1992,12(4):299-313
A systematic survey of seven parallel alpha/beta barrel protein domains, based on exhaustive structural comparisons, reveals that a sizable proportion of the alpha beta loops in these proteins--20 out of a total of 49--belong to either one of two loop types previously described by Thornton and co-workers. Six loops are of the alpha beta 1 type, with one residue between the alpha-helix and beta-strand, and 13 are of the alpha beta 3 type, with three residues between the helix and the strand. Protein fragments embedding the identified loops, and termed alpha beta connections since they contain parts of the flanking helix and strand, have been analyzed in detail revealing that each type of connection has a distinct set of conserved structural features. The orientation of the beta-strand relative to the helix and loop portions is different owing to a very localized difference in backbone conformation. In alpha beta 1 connections, the chain enters the beta-strand via a residue adopting an extended conformation, while in alpha beta 3 it does so via a residue in a near alpha-helical conformation. Other conserved structural features include distinct patterns of side chain orientation relative to the beta-sheet surface and of main chain H-bonds in the loop and the beta-strand moieties. Significant differences also occur in packing interactions of conserved hydrophobic residues situated in the last turn of the helix. Yet the alpha-helix surface of both types of connections adopts similar orientations relative to the barrel sheet surface. Our results suggest furthermore that conserved hydrophobic residues along the sequence of the connections, may be correlated more with specific patterns of interactions made with neighboring helices and sheet strands than with helix/strand packing within the connection itself. A number of intriguing observations are also made on the distribution of the identified alpha beta 1 and alpha beta 3 loops within the alpha/beta-barrel motifs. They often occur adjacent to each other; alpha beta 3 loops invariably involve even numbered beta-strands, while alpha beta 1 loops involve preferentially odd beta-strands; all the analyzed proteins contain at least one alpha beta 3 loop in the first half of the eightfold alpha/beta barrel. Possible origins of all these observations, and their relevance to the stability and folding of parallel alpha/beta barrel motifs are discussed. 相似文献
5.
Tizzano B Palladino P De Capua A Marasco D Rossi F Benedetti E Pedone C Ragone R Ruvo M 《Proteins》2005,59(1):72-79
We have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum of the free peptide was that typical of alpha-helix, but was converted to that of beta-structure in about 16 h. Instead, below 2.1 x 10(-5) M, the spectrum of the blocked peptide exhibited a single band centered at 200 nm, unequivocally associated to random conformations, which did not evolve even after 24 h. Conformational preferences of this last peptide have been investigated as a function of temperature, using trifluoroethanol or low-concentration sodium dodecyl sulfate as alpha- or beta-structure inducers, respectively. Extrapolation of free energy data to zero concentration of structuring agent highlighted that the peptide prefers alpha-helical to beta-type organization, in spite of results from prediction algorithms. However, the free energy difference between the two forms, as obtained by a thermodynamic cycle, is subtle (roughly 5-8 kJ mol(-1) at any temperature from 280 K to 350 K), suggesting conformational ambivalence. This result supports the view that, in the prion protein, the structural behavior of the peptide is governed by the cellular microenvironment. 相似文献
6.
Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method. 下载免费PDF全文
A. M. Mathiowetz W. A. Goddard rd 《Protein science : a publication of the Protein Society》1995,4(6):1217-1232
Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better. 相似文献
7.
Celia W. G. van Gelder Frank J. J. Leusen Jack A. M. Leunissen Jan H. Noordik 《Proteins》1994,18(2):174-185
Generation of full protein coordinates from limited information, e.g., the Cα coordinates, is an important step in protein homology modeling and structure determination, and molecular dynamics (MD) simulations may prove to be important in this task. We describe a new method, in which the protein backbone is built quickly in a rather crude way and then refined by minimization techniques. Subsequently, the side chains are positioned using extensive MD calculations. The method is tested on two proteins, and results compared to proteins constructed using two other MD-based methods. In the first method, we supplemented an existing backbone building method with a new procedure to add side chains. The second one largely consists of available methodology. The constructed proteins are compared to the corresponding X-ray structures, which became available during this study, and they are in good agreement (backbone RMS values of 0.5–0.7 Å, and all-atom RMS values of 1.5–1.9 Å). This comparative study indicates that extensive MD simulations are able, to some extent, to generate details of the native protein structure, and may contribute to the development of a standardized methodology to predict reliably (parts of) protein structures when only partial coordinate data are available. © 1994 John Wiley & Sons, Inc. 相似文献
8.
Stereochemical quality of protein structure coordinates. 总被引:49,自引:0,他引:49
Methods have been developed to assess the stereochemical quality of any protein structure both globally and locally using various criteria. Several parameters can be derived from the coordinates of a given structure. Global parameters include the distribution of phi, psi and chi 1 torsion angles, and hydrogen bond energies. There are clear correlations between these parameters and resolution; as the resolution improves, the distribution of the parameters becomes more clustered. These features show a broad distribution about ideal values derived from high-resolution structures. Some structures have tightly clustered distributions even at relatively low resolutions, while others show abnormal scatter though the data go to high resolution. Additional indicators of local irregularity include proline phi angles, peptide bond planarities, disulfide bond lengths, and their chi 3 torsion angles. These stereochemical parameters have been used to generate measures of stereochemical quality which provide a simple guide as to the reliability of a structure, in addition to the most important measures, resolution and R-factor. The parameters used in this evaluation are not novel, and are easily calculated from structure coordinates. A program suite is currently being developed which will quickly check a given structure, highlighting unusual stereochemistry and possible errors. 相似文献
9.
The support vector machines (SVMs) method is proposed because it can reflect the sequence-coupling effect for a tetrapeptide in not only a beta-turn or non-beta-turn, but also in different types of beta-turn. The results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for beta-turn types I, I', II, II', VI and VIII and non-beta-turns are 99.92%, 96.8%, 98.02%, 97.75%, 100%, 97.19% and 100%, respectively. Using these training data, the rate of correct prediction by the SVMs for a given protein: rubredoxin (54 residues. 51 tetrapeptides) which includes 12 beta-turn type I tetrapeptides, 1 beta-turn type II tetrapeptide and 38 non-beta-turns reached 82.4%. The high quality of prediction of the SVMs implies that the formation of different beta-turn types or non-beta-turns is considerably correlated with the sequence of a tetrapeptide. The SVMs can save CPU time and avoid the overfitting problem compared with the neural network method. 相似文献
10.
Reconstruction of protein conformations from estimated positions of the C alpha coordinates. 下载免费PDF全文
P. W. Payne 《Protein science : a publication of the Protein Society》1993,2(3):315-324
Protein C alpha coordinates are used to accurately reconstruct complete protein backbones and side-chain directions. This work employs potentials of mean force to align semirigid peptide groups around the axes that connect successive C alpha atoms. The algorithm works well for all residue types and secondary structure classes and is stable for imprecise C alpha coordinates. Tests on known protein structures show that root mean square errors in predicted main-chain and C beta coordinates are usually less than 0.3 A. These results are significantly more accurate than can be obtained from competing approaches, such as modeling of backbone conformations from structurally homologous fragments. 相似文献
11.
Eukaryotic translation elongation factor 1γ contains a glutathione transferase domain—Study of a diverse,ancient protein super family using motif search and structural modeling 下载免费PDF全文
Eugene V. Koonin Roman L. Tatusov Stephen F. Altschul Stephen H. Bryant Arcady R. Mushegian Peer Bork Alfonso Valencia 《Protein science : a publication of the Protein Society》1994,3(11):2045-2055
Using computer methods for multiple alignment, sequence motif search, and tertiary structure modeling, we show that eukaryotic translation elongation factor 1γ (EF1γ) contains an N-terminal domain related to class θ glutathione S-transferases (GST). GST-like proteins related to class θ comprise a large group including, in addition to typical GSTs and EF1γ, stress-induced proteins from bacteria and plants, bacterial reductive dehalogenases and β-etherases, and several uncharacterized proteins. These proteins share 2 conserved sequence motifs with GSTs of other classes (α, μ, and π). Tertiary structure modeling showed that in spite of the relatively low sequence similarity, the GST-related domain of EF1γ is likely to form a fold very similar to that in the known structures of class α, μ, and π GSTs. One of the conserved motifs is implicated in glutathione binding, whereas the other motif probably is involved in maintaining the proper conformation of the GST domain. We predict that the GST-like domain in EF1γ is enzymatically active and that to exhibit GST activity, EF1γ has to form homodimers. The GST activity may be involved in the regulation of the assembly of multisubunit complexes containing EF1 and aminoacyl-tRNA synthetases by shifting the balance between glutathione, disulfide glutathione, thiol groups of cysteines, and protein disulfide bonds. The GST domain is a widespread, conserved enzymatic module that may be covalently or noncovalently complexed with other proteins. Regulation of protein assembly and folding may be 1 of the functions of GST. 相似文献
12.
The restriction endonuclease (REase) R. HphI is a Type IIS enzyme that recognizes the asymmetric target DNA sequence 5'-GGTGA-3' and in the presence of Mg(2+) hydrolyzes phosphodiester bonds in both strands of the DNA at a distance of 8 nucleotides towards the 3' side of the target, producing a 1 nucleotide 3'-staggered cut in an unspecified sequence at this position. REases are typically ORFans that exhibit little similarity to each other and to any proteins in the database. However, bioinformatics analyses revealed that R.HphI is a member of a relatively big sequence family with a conserved C-terminal domain and a variable N-terminal domain. We predict that the C-terminal domains of proteins from this family correspond to the nuclease domain of the HNH superfamily rather than to the most common PD-(D/E)XK superfamily of nucleases. We constructed a three-dimensional model of the R.HphI catalytic domain and validated our predictions by site-directed mutagenesis and studies of DNA-binding and catalytic activities of the mutant proteins. We also analyzed the genomic neighborhood of R.HphI homologs and found that putative nucleases accompanied by a DNA methyltransferase (i.e. predicted REases) do not form a single group on a phylogenetic tree, but are dispersed among free-standing putative nucleases. This suggests that nucleases from the HNH superfamily were independently recruited to become REases in the context of RM systems multiple times in the evolution and that members of the HNH superfamily may be much more frequent among the so far unassigned REase sequences than previously thought. 相似文献
13.
Analysis of interactive packing of secondary structural elements in alpha/beta units in proteins 下载免费PDF全文
Reddy BV Nagarajaram HA Blundell TL 《Protein science : a publication of the Protein Society》1999,8(3):573-586
An alpha-helix and a beta-strand are said to be interactively packed if at least one residue in each of the secondary structural elements loses 10% of its solvent accessible contact area on association with the other secondary structural element. An analysis of all such 5,975 nonidentical alpha/beta units in protein structures, defined at < or = 2.5 A resolution, shows that the interaxial distance between the alpha-helix and the beta-strand is linearly correlated with the residue-dependent function, log[(V/nda)/n-int], where V is the volume of amino acid residues in the packing interface, nda is the normalized difference in solvent accessible contact area of the residues in packed and unpacked secondary structural elements, and n-int is the number of residues in the packing interface. The beta-sheet unit (beta u), defined as a pair of adjacent parallel or antiparallel hydrogen-bonded beta-strands, packing with an alpha-helix shows a better correlation between the interaxial distance and log(V/nda) for the residues in the packing interface. This packing relationship is shown to be useful in the prediction of interaxial distances in alpha/beta units using the interacting residue information of equivalent alpha/beta units of homologous proteins. It is, therefore, of value in comparative modeling of protein structures. 相似文献
14.
Anatomy of a conformational transition of beta-strand 6 in soybean beta-amylase caused by substrate (or inhibitor) binding to the catalytical site. 总被引:1,自引:0,他引:1 下载免费PDF全文
A computational study of the five soybean beta-amylase X-ray structure reported so far revealed a peculiar conformational transition after substrate (or inhibitor) binding, which affects a segment of the beta-strand 6 (residues 341-343) in the (beta/alpha)8 molecular scaffold. Backbone distortions that involve considerable changes in the phi and psi angles were observed, as well as two sharp rotamer transitions for the Thr342 and Cys343 side chains. These changes caused the outermost CA-layer (at the C-terminal side of the barrel), which is involved in the catalysis, to shrink. Our observations strongly suggest that the 341FTC343 residue conformations in the free enzyme are not optimal for protein stability. Furthermore, as a result of conformational transitions in the ligand-binding process, there is a negative enthalpy change for these residues (-27 and -34 kcal/mol, after substrate or inhibitor binding, respectively). These findings support the proposed "stability-function" hypothesis for proteins that recognize a ligand (Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship between protein stability and protein function. Proc Natl Acad Sci USA 92:452-456). They are also in good agreement with other experimental results in the literature that describe the role of the 341-343 segment in beta-amylase activity. Site-directed mutagenesis focused on these residues could be useful for undertaking functional studies of beta-amylase. 相似文献
15.
Linkers that connect repeating secondary structures fall into conformational classes based on distance and main-chain torsion clustering. A data set of 300 unique protein chains with low pairwise sequence identity was clustered into only a few groups representing the preferred motifs. The linkers of two to eight residues for the nonredundant data set are designated H-Ln-H, H-Ln-E, E-Ln-H, E-Ln-E, where n is the length, H stands for alpha-helices, and E for beta-strands. Most of the clusters identified here corroborate earlier findings. However, 19 new clusters are identified in this paper, with many of them having seven and eight residue linkers. In our first analysis, the secondary structures flanking the linkers are both interacting and noninteracting and there is no precise angle of orientation between them. A second analysis was performed on a set of proteins with restricted orientations for the flanking elements, namely, mainly alpha class of proteins with orthogonal architecture. Two definite clusters are identified, one corresponding to linkers of orthogonal helices and the other to linkers of antiparallel helices. Loops forming binding sites or involved in catalytic activity are important determinants of the function of proteins. Although the structural conservation of the residues around the catalytic triad of serine proteases has been studied widely, there has not been a systematic analysis of the conformation of the loops that contain them. Residues of the catalytic triad reside in the linkers of beta-strands, with varying lengths of more than eight residues. Here, we analyze the structural conservation of such linkers by superposition, and observe a conserved structural feature of the linkers incorporating each of the three residues of the catalytic triad. 相似文献
16.
The selective precipitation of alpha-lactalbumin (alpha-LA) at a pH around its isoelectric point (4.2) under heat treatment is the basis for a fractionation process of whey proteins. As precipitation is a phenomenon dependent on the protein hydrophobicity, and as the release of the tightly bound calcium occurring at pH around 4 modifies the alpha-LA hydrophobicity, the specific role of calcium on isoelectric precipitation is investigated. A study of the extent of alpha-LA precipitation in a whey protein concentrate under various operating conditions of pH, temperature, protein concentration, and calcium content is presented. We propose a mechanism for this phenomenon as a combination of a complexation equilibrium and of an irreversible precipitation, to account for the influence of temperature, alpha-LA concentration total ionic content, and calcium concentration, and also to estimate the complexation equilibrium constant. (c) 1995 John Wiley & Sons, Inc. 相似文献
17.
Representing an ensemble of NMR-derived protein structures by a single structure. 总被引:1,自引:0,他引:1 下载免费PDF全文
M. J. Sutcliffe 《Protein science : a publication of the Protein Society》1993,2(6):936-944
The usefulness of representing an ensemble of NMR-derived protein structures by a single structure has been investigated. Two stereochemical properties have been used to assess how a single structure relates to the ensemble from which it was derived, namely the distribution of phi psi torsion angles and the distribution of chi 1 torsion angles. The results show that the minimized average structure derived from the ensemble (a total of 11 ensembles from the Brookhaven Protein Data Bank were analyzed) does not always correspond well with this ensemble, particularly for those ensembles generated with a smaller number of experimentally derived restraints per residue. An alternative method that selects the member of the ensemble which is closest to the "average" of the ensemble has been investigated (a total of 23 ensembles from the Brookhaven Protein Data Bank were analyzed). Although this method selected a structure that on the whole corresponded more closely to the ensemble than did the minimized average structure, this is still not a totally reliable means of selecting a single structure to represent the ensemble. This suggests that it is advisable to study the ensemble as a whole. A study has also been made of the practice of selecting the "best" rather than the most representative member of the ensemble. This too suggests that the ensemble should be studied as a whole. A study of the conformational space occupied by the ensemble also suggests the need to consider the ensemble as a whole, particularly for those ensembles generated with a smaller number of experimentally derived restraints per residue. 相似文献
18.
We used Fourier transform infrared (FTIR) microspectroscopy to investigate pressure-induced conformational changes in secondary structure of fibrinogen (FBG). Solid state FBG was compressed on a KBr pellet (1KBr method) or between two KBr pellets (2KBr method). The peak positions of the original and second-derivative ir spectra of compressed FBG samples prepared by the 1KBr method were similar to FBG sample without pressure. When FBG was prepared by the 2KBr method and pressure was increased up to 400 kg/cm(2), peaks at 1625 (intermolecular beta-sheet) and 1611 (beta-sheet aggregates structure and/or the side-chain absorption of the tyrosine residues) cm(-1) were enhanced. The peaks near 1661 (beta-sheet) and 1652 (alpha-helix) cm(-1) also exhibited a marked change with pressure. A linear correlation was found between the peak intensity ratio of 1611/1652 cm(-1) (r = 0.9879) or 1625/1652 cm(-1) (r = 0.9752) and applied pressure. The curve-fitted compositional changes in secondary structure of FBG also indicate that the composition of the alpha-helix structure (1657-1659 cm(-1)) was gradually reduced with the increase in compression pressure, but the composition of the beta-sheet structure (1681, 1629, and 1609 cm(-1)) gradually increased. This indicates that pressure-induced conformational changes in FBG include not only transformations from alpha-helix to beta-sheet structure, but also unfolding and denaturation of FBG and the formation of aggregates. 相似文献
19.
Three-dimensional model and quaternary structure of the human eye lens protein gamma S-crystallin based on beta- and gamma-crystallin X-ray coordinates and ultracentrifugation. 总被引:1,自引:1,他引:1 下载免费PDF全文
S. Zarina C. Slingsby R. Jaenicke Z. H. Zaidi H. Driessen N. Srinivasan 《Protein science : a publication of the Protein Society》1994,3(10):1840-1846
A 3-dimensional model of the human eye lens protein gamma S-crystallin has been constructed using comparative modeling approaches encoded in the program COMPOSER on the basis of the 3-dimensional structure of gamma-crystallin and beta-crystallin. The model is biased toward the monomeric gamma B-crystallin, which is more similar in sequence. Bovine gamma S-crystallin was shown to be monomeric by analytical ultracentrifugation without any tendency to form assemblies up to concentrations in the millimolar range. The connecting peptide between domains was therefore built assuming an intramolecular association as in the monomeric gamma-crystallins. Because the linker has 1 extra residue compared with gamma B and beta B2, the conformation of the connecting peptide was constructed by using a fragment from a protein database. gamma S-crystallin differs from gamma B-crystallin mainly in the interface region between domains. The charged residues are generally paired, although in a different way from both beta- and gamma-crystallins, and may contribute to the different roles of these proteins in the lens. 相似文献
20.
Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease 总被引:1,自引:0,他引:1 下载免费PDF全文
Elliott PR Pei XY Dafforn TR Lomas DA 《Protein science : a publication of the Protein Society》2000,9(7):1274-1281
Members of the serpin family of serine proteinase inhibitors play important roles in the inflammatory, coagulation, fibrinolytic, and complement cascades. An inherent part of their function is the ability to undergo a structural rearrangement, the stressed (S) to relaxed (R) transition, in which an extra strand is inserted into the central A beta-sheet. In order for this transition to take place, the A sheet has to be unusually flexible. Malfunctions in this flexibility can lead to aberrant protein linkage, serpin inactivation, and diseases as diverse as cirrhosis, thrombosis, angioedema, emphysema, and dementia. The development of agents that control this conformational rearrangement requires a high resolution structure of an active serpin. We present here the topology of the archetypal serpin alpha1-antitrypsin to 2 A resolution. This structure allows us to define five cavities that are potential targets for rational drug design to develop agents that will prevent conformational transitions and ameliorate the associated disease. 相似文献