首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

2.
A novel halophilic strain that could carry out heterotrophic nitrification and aerobic denitrification was isolated and named as Halomonas campisalis ha3. It removed inorganic nitrogen compounds (e.g. NO3 ?, NO2 ? and NH4 +) simultaneously, and grew well in the medium containing up to 20 % (w/v) NaCl. PCR revealed four genes in the genome of ha3 related to aerobic denitrification: napA, nirS, norB and nosZ. The optimal conditions for aerobic denitrification were pH 9.0, at 37 °C, with 4 % (w/v) NaCl and sodium succinate as carbon source. The nitrogen removal rate was 87.5 mg NO3 ?–N l?1 h?1. Therefore, this strain is a potential aerobic denitrifier for the treatment of saline wastewater.  相似文献   

3.

Excess inorganic nitrogen in water poses a severe threat to enviroment. Removal of inorganic nitrogen by heterotrophic nitrifying–aerobic denitrifying microorganism is supposed to be a promising and applicable technology only if the removal rate can be maintained sufficiently high in real wastewater under various conditions, such as high concentration of salt and wide range of different nitrogen concentrations. Here, a new heterotrophic nitrifying–aerobic denitrifying bacterium was isolated and named as Pseudomonas mendocina TJPU04, which removes NH4+-N, NO3-N and NO2-N with average rate of 4.69, 5.60, 4.99 mg/L/h, respectively. It also maintains high nitrogen removal efficiency over a wide range of nitrogen concentrations. When concentration of NH4+-N, NO3-N and NO2-N was up to 150, 150 and 50 mg/L, 98%, 93%, and 100% removal efficiency could be obtained, respectively, after 30-h incubation under sterile condition. When it was applied under non-sterile condition, the ammonia removal efficiency was slightly lower than that under sterile condition. However, the nitrate and nitrite removal efficiencies under non-sterile condition were significantly higher than those under sterile condition. Strain TJPU04 also showed efficient nitrogen removal performance in the presence of high concentration of salt and nitrogen. In addition, the removal efficiencies of NH4+-N, NO3-N and TN in real wastewater were 91%, 52%, and 75%, respectively. These results suggest that strain TJPU04 is a promising candidate for efficient removal of inorganic nitrogen in wastewater treatment.

  相似文献   

4.
Alcaligenes faecalis sp. No. 4, that has the ability of heterotrophic nitrification and aerobic denitrification in high-strength ammonium at about 1200 mg-N/l, converted about one-half of removed NH 4+-N to intracellular nitrogen and nitrified only 3% of the removed NH4+. From the nitrogen balance, 40–50% of removed NH4+-N was estimated to be denitrified. Production of N2 was confirmed by GC-MS and 90% of denitrified products was N2. The maximum ammonium removal rate, 29 mg-N/l h and its denitrification rate in aerated batch experiments, were 5–40 times higher than those of other bacteria with the same ability.  相似文献   

5.
Zhang J  Wu P  Hao B  Yu Z 《Bioresource technology》2011,102(21):9866-9869
A strain YZN-001 was isolated from swine manure effluent and was identified as Pseudomonas stutzeri. It can utilise not only nitrate and nitrite, but also ammonium. The strain had the capability to fully remove as much as 275.08 mg L−1 NO3–N and 171.40 mg L−1 NO2–N under aerobic conditions. Furthermore, At 30 °C, the utilization of ammonium is approximately 95% by 18 h with a similar level removed by 72 h and 2 weeks at 10 and 4 °C, respectively. Triplicate sets of tightly sealed serum bottles were used to test the heterotrophic nitrifying ability of P. stutzeri YZN-001. The results showing that 39% of removed NH4+–N was completely oxidised to nitrogen gas by 18 h. Indicating that the strain has heterotrophic nitrification and aerobic denitrification abilities, with the notable ability to remove ammonium at low temperatures, demonstrating a potential using the strain for future application in waste water treatment.  相似文献   

6.
A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2–3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2–3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO3 and NH4 +, respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO3 -inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH4 +)-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.  相似文献   

7.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

8.
The growth of Salvinia molesta D.S. Mitchell was studied in a greenhouse using controlled-temperature water-baths at 16, 19 and 22°C and 4 different nitrogen compounds (NO3?, NH4+, NH4NO3 and urea) at levels up to 60 mg N l?1. Little growth occurred at 16°C even if 20 mg N l?1 was supplied together with other nutrients including phosphorus (2 mg H2PO4-P l?1). The highest relative growth rate and total dry matter production occurred at 22°C when plants were supplied with 20 mg NH4-N l?1. At this temperature, the NH4+ ion was superior to the NO3? ion or urea as a nitrogen source (almost doubling the biomass), but was not significantly better than NH4NO3. Over a period of 19 days for plants receiving 0.02 mg NH4-N l?, biomass increased 4-fold at 16°C, 9-fold at 19°C and 10-fold at 22°C. In contrast, for plants receiving 20 mg NH4-N l?1, biomass increased 4-fold at 16°C, 18-fold at 19°C and 38-fold at 22°C.  相似文献   

9.
康希睿  张涵丹  王小明  陈光才 《生态学报》2020,40(19):6958-6968
森林群落在净化空气、截留沉降污染物、改善地表水质等方面具有重要作用。本研究以北亚热带地区3种典型森林群落(毛竹林、杉木林、青冈阔叶林)为研究对象,通过分析沉降污染物(NH4+-N、NO3--N、NO2--N、TP和SO42-)在大气降水、林内穿透雨、树干茎流、枯透水和地表径流中的浓度和通量变化特征,探讨不同森林群落对氮、磷、硫的截留净化作用和分配特征。结果表明,该区域大气降水中NH4+-N、NO3--N、NO2--N、TP和SO42-年均浓度分别为1.06、0.61、0.04、0.07、1.84 mg/L,其年均pH为5.88;各森林群落林冠层能够调升降雨的pH且全年稳定,对TP和NH4+-N均有吸附作用,截留率分别为79.09%-84.68%和30.88%-69.36%;而枯落物层则是林下氮、磷、硫的主要释放源,对NH4+-N、NO3--N、TP和SO42-均具有淋溶作用;此外,由地表径流(输出)与大气降水(输入)的对比分析可知,各林地对沉降污染物中氮、磷、硫的截留率均超过98%;3种森林群落对沉降污染物中氮、磷、硫的截留能力依次为:青冈阔叶林 > 毛竹林 > 杉木林,阔叶林对沉降污染物的净化能力要高于毛竹林及针叶的杉木林。  相似文献   

10.
This study aimed to address the importance of glutamine synthetase II (GSII) during nitrogen assimilation in macroalga Gracilariopsis lemaneiformis. The cDNA full‐length sequence of the three glGSII genes was revealed to have the 5′ m7G cap, 5′‐untranslated region, open reading frame (ORF), 3′‐untranslated region, and a 3′ poly (A) tail. The three glGSIIs were classified into plastid glGS2 and cytosolic glGS1‐1 and glGS1‐2, having conserved GSII domains but different cDNA sequences. The complicated 5′ end flanking region indicates complex function of glGS genes. glGS1 genes were significantly up‐regulated under the different NH4+: NO3? ratio (i.e., 40:10, 25:25, 10:40, and 0:50) except glGS2 which dramatically up‐regulated under the low NH4+: NO3? ratio (i.e., 10:40 and 0:50) during different cultivation times. These different expression patterns perhaps are due to the different biological roles of GS1 and GS2 in the gene family. Furthermore, hypothetical working model of nitrogen assimilation pathway exhibiting the role of glGS1 and glGS2 is proposed. Finally, glGS2 was expressed in Escherichia coli BL21 (DE3), and the optimal conditions for culture (15°C, overnight), purification (500 mM imidazole washing), and activity (pH 7.4, 37°C) were established. This study lays a very important foundation for exploring the role of GS in nitrogen assimilation in algae and plants.  相似文献   

11.
Volder  Astrid  Bliss  Lawrence C.  Lambers  Hans 《Plant and Soil》2000,227(1-2):139-148
Polar-desert plants experience low average air temperatures during their short growing season (4–8 °C mean July temperature). In addition, low availability of inorganic nitrogen in the soil may also limit plant growth. Our goals were to elucidate which N sources can be acquired by polar-desert plants, and how growth and N-uptake are affected by low growth temperatures. We compared rates of N-uptake and increases in mass and leaf area of two polar-desert species (Cerastium alpinum L. and Saxifraga caespitosa L.) over a period of 3 weeks when grown at two temperatures (6 °C vs. 15 °C) and supplied with either glycine, NH4 + or NO3 . At 15 °C, plants at least doubled their leaf area, whereas there was no change in leaf area at 6 °C. Measured mean N-uptake rates varied between 0.5 nmol g−1 root DM s−1 on glycine at 15 °C and 7.5 nmol g−1 root DM s−1 on NH4 + at 15 °C. Uptake rates based upon increases in mass and tissue N concentrations showed that plants had a lower N-uptake rate at 6 °C, regardless of N source or species. We conclude that these polar-desert plants can use all three N sources to increase their leaf area and support flowering when grown at 15 °C. Based upon short-term (8 h) uptake experiments, we also conclude that the short-term capacity to take up inorganic or organic N is not reduced by low temperature (6 °C). However, net N-uptake integrated over a three-week period is severely reduced at 6 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
汪庆兵  张建锋  陈光才  孙慧  吴灏  张颖  杨泉泉  王丽 《生态学报》2015,35(16):5364-5373
采用水培法,研究了旱柳苗在外源添加不同氮水平(贫氮、中氮、富氮、过氮)的铵态氮(NH+4-N)和硝态氮(NO-3-N)的生长、氮吸收、分配和生理响应。结果表明:一定范围氮浓度的增加能够促进旱柳苗的生长,但过量氮会抑制其生长,且NH+4-N的抑制作用大于NO-3-N;两种氮处理下,旱柳表现出对NH+4-N的吸收偏好,在同一氮水平时,旱柳各部位氮原子百分含量Atom%15N(AT%)、15N吸收量和来自氮源的N%(Ndff%)均为NH+4-N处理大于NO-3-N处理,且随着氮浓度的增加,差异增大,且在旱柳各部位的分布为根﹥茎﹥叶;2种氮素过量和不足均会对旱柳根和叶生理指标产生不同的影响,其中在过氮水平时,NH+4-N和NO-3-N处理下根系活力比对照减少了50.61%和增加了19.53%;在过氮水平时,NH+4-N处理柳树苗根总长、根表面积、根平均直径、根体积和侧根数分别对照下降了30.92%、29.48%、19.44%、27.01%和36.41%,NO-3-N处理柳树苗相应的根系形态指标分别对对照下降了1.66%、5.65%、1.49%、5.06%和25.72%。可见,高浓度NH+4-N对旱柳苗的胁迫影响大于NO-3-N,在应用于水体氮污染修复时可通过改变水体无机氮的比例,削弱其对旱柳的影响,从而提高旱柳对水体氮污染的修复效果。  相似文献   

13.
A Pseudomonas sp. strain, which can utilize quinoline as its sole carbon, nitrogen and energy source, was isolated from activated sludge in a coking wastewater treatment plant. Quinoline can be degraded via the 8-hydroxycoumarin pathway. We quantified the first two organic intermediates of the biodegradation, 2-hydroxyquinoline and 2,8-dihydroxyquinoline. We tracked the transformation of the nitrogen in quinoline in two media containing different C/N ratios. At least 40.4% of the nitrogen was finally transformed into ammonium when quinoline was the sole C and N source. But addition of an external carbon source like glucose promoted the transformation of N from NH3 into NO3 , NO2 , and then to N2. The product analysis and gene characteristics indicated that the isolate accomplished heterotrophic nitrification and aerobic denitrification simultaneously. The study also demonstrated that quinoline and its metabolic products can be eliminated if the C/N ratio is properly controlled in the treatment of quinoline-containing wastewater.  相似文献   

14.
Intact sediment cores from rivers of the Bothnian Bay (Baltic Sea) were studied for denitrification based on benthic fluxes of molecular nitrogen (N2) and nitrous oxide (N2O) in a temperature controlled continuous water flow laboratory microcosm under 10, 30, 100, and 300 μM of 15N enriched nitrate (NO3 ?, ~98 at. %). Effluxes of both N2 and N2O from sediment to the overlying water increased with increasing NO3 ? load. Although the ratio of N2O to N2 increased with increasing NO3 ? load, it remained below 0.04, N2 always being the main product. At the NO3 ? concentrations most frequently found in the studied river water (10–100 μM), up to 8% of the NO3 ? was removed in denitrification, whereas with the highest concentration (300 μM), the removal by denitrification was less than 2%. However, overall up to 42% of the NO3 ? was removed by mechanisms other than denitrification. As the microbial activity was simultaneously enhanced by the NO3 ? load, shown as increased oxygen consumption and dissolved inorganic carbom efflux, it is likely that a majority of the NO3 ? was assimilated by microbes during their growth. The 15N content in ammonium (NH4 +) in the efflux was low, suggesting that reduction of NO3 ? to NH4 + was not the reason for the NO3 ? removal. This study provides the first published information on denitrification and N2O fluxes and their regulation by NO3 ? load in eutrophic high latitude rivers.  相似文献   

15.
雷睿  邹佳城  杜杰  文庄海  罗治  雷泞菲 《广西植物》2023,43(9):1578-1587
为探讨氮沉降对九寨沟藓类植物的影响,该研究以当地优势藓类植物锦丝藓(Actinothuidium hookeri)和塔藓(Hylocomium splendens)为对象,以NH4NO3为氮源,设置对照(0 kg N·hm-2·a-1)、低浓度(20 kg N·hm-2·a-1)、高浓度(50 kg N·hm-2·a-1)3种处理,开展为期6个月的氮沉降模拟实验。结果表明:(1)氮沉降处理导致两种藓类植物的活性氧、丙二醛、叶绿素、脯氨酸和可溶性蛋白含量显著增加,同时锦丝藓过氧化氢酶、过氧化物酶、超氧化物歧化酶、抗坏血酸过氧化物酶活性增加。(2)对于生长旺期和生长末期的塔藓,氮沉降导致其过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶活性降低。(3)锦丝藓的综合隶属函数值随氮沉降浓度增大而增加,在生长旺期和生长末期,塔藓综合隶属函数值对氮沉降的响应存在差异。综上认为,两种藓类植物对氮沉降处理的生理响应存在差异,高浓度氮沉...  相似文献   

16.
Herein, a denitrifying bacterium that produced greenish fluorescent pigment under aerobic conditions was accidentally isolated from municipal sewage sludge. Using 16S-rDNA sequence analysis, we identified the isolate as Pseudomonas aeruginosa R12, with 100% similarity. We achieved the highest pigment production rate (1.36 mg/L/h) in a 1-L bioreactor under aerobic conditions, using the optimal culture parameters determined in this study: 37°C, pH 8.0, 200 rpm, 5 wm aeration, and medium containing succinate and (NH4)2SO4. The pigment was not a secondary metabolite and had no antibacterial activity on its co-isolates. Under anaerobic conditions, the isolate produced mainly N2 and behaved as a strong denitrifier, displaying synergistic denitrification with co-isolated denitrifiers. To our knowledge, herein we have described the first instance in which P. aeruginosa R12 produces a fluorescent pigment under aerobic conditions. This newly-isolated strain therefore shows potential as a commercial resource for natural pigment.  相似文献   

17.
Providencia rettgeri strain YL was found to be efficient in heterotrophic nitrogen removal under aerobic conditions. Maximum removal of NH4 +–N occurred under the conditions of pH 7 and supplemented with glucose as the carbon source. Inorganic ions such as Mg2+, Mn2+, and Zn2+ largely influenced the growth and nitrogen removal efficiency. A quantitative detection of nitrogen gas by gas chromatography was conducted to evaluate the nitrogen removal by strain YL. From the nitrogen balance during heterotrophic growth with 180 mg/l of NH4 +–N, 44.5% of NH4 +–N was in the form of N2 and 49.7% was found in biomass, with only a trace amount of either nitrite or nitrate. The utilization of nitrite and nitrate during the ammonium removal process demonstrated that the nitrogen removal pathway by strain YL was heterotrophic nitrification-aerobic denitrification. A further enzyme assay of nitrate reductase and nitrite reductase activity under the aerobic condition confirmed this nitrogen removal pathway.  相似文献   

18.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

19.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

20.
以5份不同种源的菘蓝为材料,采用田间小区试验,设置不施氮(CK)、硝态氮(NO3--N)、铵态氮(NH4+-N)、NH4+-N/NO3--N=75/25、NH4+-N/NO3--N=50/50、NH4+-N/NO3--N=25/75和酰胺态氮等7个处理,分析比较了不同种源植株的靛蓝、靛玉红和总生物碱含量、(R,S)-告依春及多糖含量等指标的差异,为菘蓝栽培生产中氮素的高效利用提供理论参考。结果表明:氮素处理有利于提高山西运城菘蓝和陕西商洛菘蓝叶内靛蓝含量,以及安徽亳州菘蓝和陕西商洛菘蓝叶内的总生物碱含量;NH4+-N/NO3--N=50/50处理对山西运城菘蓝,以及酰胺态氮处理对山西运城菘蓝和陕西商洛菘蓝叶内生物碱类成分的积累均有促进作用;与对照相比,氮素处理亦能有效地提高甘肃张掖菘蓝和陕西商洛菘蓝根内的(R,S)-告依春及安徽亳州菘蓝根内的多糖含量;安徽阜阳菘蓝(R,S)-告依春含量在任一氮处理下均远远高于其他种质菘蓝。研究表明,不同种源菘蓝对氮素处理的响应存在较大的差异,建议生产中综合考虑菘蓝的来源和需肥规律,采用经济有效的施氮组合,以提高其活性成分含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号