首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. A new rapid method for the purification of fat-cell acetyl-CoA carboxylase is described; the key step is sedimentation after specific polymerization by citrate. 2. Incubation of epididymal fat-pads or isolated fat-cells with insulin or adrenaline leads to a rapid increase or decrease respectively in the activity of acetyl-CoA carboxylase measured in fresh tissue extracts. The persistence of the effect of insulin through high dilution of tissue extracts and through purification involving precipitation with (NH4)2SO4 suggests that the enzyme undergoes a covalent modification after exposure of intact tissue to the hormone. The opposed effects of insulin and adrenaline are not adequately explained through modification of a common site on acetyl-CoA carboxylase, since these hormones bring about qualitatively different alterations in the kinetic properties of the enzyme measured in tissue extracts. 3. The state of phosphorylation of acetyl-CoA carboxylase within intact fat-cells exposed to insulin was determined, and results indicate a small but consistent rise in overall phosphorylation of the Mr-230000 subunit after insulin treatment. 4. Acetyl-CoA carboxylase from fat-cells previously incubated in medium containing [32P]phosphate was purified by immunoprecipitation and then digested with performic acid and trypsin before separation of the released phosphopeptides by two-dimensional analysis. Results obtained show that the exposure of fat-cells to insulin leads to a 5-fold increase in incorporation of 32P into a peptide which is different from those most markedly affected after exposure of fat-cells to adrenaline. 5. These studies indicate that the activation of acetyl-CoA carboxylase in cells incubated with insulin is brought about by the increased phosphorylation of a specific site on the enzyme, possibly catalysed by the membrane-associated cyclic AMP-independent protein kinase described by Brownsey, Belsham & Denton [(1981) FEBS Lett. 124, 145-150].  相似文献   

2.
1. Exposure of rat epididymal fat-pads or isolated fat-cells to adrenaline results in a decrease in acetyl-CoA carboxylase activity measured both in initial extracts and in extracts incubated with potassium citrate; in addition the concentration of citrate required to give half-maximal activation may also be increased. 2. Incorporation of 32Pi into acetyl-CoA carboxylase within intact fat-cells was investigated and evidence is presented that adrenaline increases the extent of phosphorylation of the enzyme. 3. Dephosphorylation of 32P-labelled acetyl-CoA carboxylase was studied in cell extracts. The rate of release of 32P is increased by 5mM-MgCl2 plus 10--100 microM-Ca2+, whereas it is inhibited by the presence of bivalent metal ion chelators such as EDTA and citrate. 4. The effects of adrenaline on the kinetic properties of acetyl-CoA carboxylase disappear if pad or cell extracts are treated with Mg2+ and Ca2+ under conditions that also lead to dephosphorylation of the enzyme. 5. The results of this study represent convincing evidence that adrenaline inactivates acetyl-CoA carboxylase in adipose-tissue preparations by increasing the degree of phosphorylation of the enzyme.  相似文献   

3.
Protein kinase activity in high-speed supernatant fractions prepared from rat epididymal adipose tissue previously incubated in the absence or presence of insulin was investigated by following the incorporation of 32P from [gamma-32P]ATP into phosphoproteins separated by sodium dodecyl sulphate/polyacrylamide-gel electro-phoresis. Incorporation of 32P into several endogenous proteins in the supernatant fractions from insulin-treated tissue was significantly increased. These included acetyl-CoA carboxylase and ATP citrate lyase (which exhibit increased phosphorylation within fat-cells exposed to insulin), together with two unknown proteins of subunit Mr 78000 and 43000. The protein kinase activity increased by insulin was distinct from cyclic AMP-dependent protein kinase, was not dependent on Ca2+ and was not appreciably affected by dialysis or gel filtration. The rate of phosphorylation of added purified fat-cell acetyl-CoA carboxylase and ATP citrate lyase was also increased by 60-90% in high-speed-supernatant fractions prepared from insulin-treated tissue. No evidence for any persistent changes in phosphoprotein phosphatase activity was found. It is concluded that insulin action on acetyl-CoA carboxylase, ATP citrate lyase and other intracellular proteins exhibiting increased phosphorylation involves an increase in cyclic AMP-independent protein kinase activity in the cytoplasm. The possibility that the increase reflects translocation from the plasma membrane, perhaps after phosphorylation by the protein tyrosine kinase associated with insulin receptors, is discussed.  相似文献   

4.
Molecular cloning of cDNA for acetyl-coenzyme A carboxylase   总被引:4,自引:0,他引:4  
Poly(A)+ RNA from lactating rat mammary glands was size-fractionated to enrich the relative amount of acetyl-CoA carboxylase mRNA. The enriched mRNA was used to generate a lambda gt11 cDNA library. Initial screening with polyclonal antiserum to acetyl-CoA carboxylase produced three positive clones. Western blot analysis revealed that two clones, lambda DH3 and lambda KH18, synthesized 165,000-dalton proteins that were recognized by antibodies to acetyl-CoA carboxylase and beta-galactosidase, indicating that acetyl-CoA carboxylase/beta-galactosidase fusion proteins were produced. Competition experiments with purified acetyl-CoA carboxylase further demonstrated that the fusion proteins contained acetyl-CoA carboxylase protein segments. Antibodies which are specific to the fusion proteins were isolated. These antibodies cross-reacted only with acetyl-CoA carboxylase in a preparation of partially purified acetyl-CoA carboxylase. In addition, the antibodies immunoprecipitated enzyme activity from a crude liver homogenate. Northern blot analysis of total RNA revealed two RNA species: one 10 kilobases and the other 3.0 kilobases. The levels of these RNA species increased when starved animals were fed a fat-free diet, indicating that they are coordinately regulated.  相似文献   

5.
Phosphorylation of pea chloroplast acetyl-CoA carboxylase   总被引:4,自引:2,他引:2  
We have examined whether chloroplast acetyl-CoA carboxylase is a phosphoprotein. Pea ( Pisum sativum ) chloroplasts were incubated in the presence of [γ- 33 P]-ATP and radiolabeled proteins were examined after immunoprecipitation with antibodies against all four known subunits of heteromeric chloroplast acetyl-CoA carboxylase. The β-subunit of the carboxyltransferase was found to be labeled by 33 P. Phosphoamino acid analysis of the immunoprecipitated β-subunit of the carboxyltransferase indicates that it is phosphorylated on serine residues. Incorporation of 33 P into carboxyltransferase β-subunit decreased in chloroplasts transferred to dark conditions after labeling in the light. Dephosphorylation of pea chloroplast extracts by an alkaline phosphatase-agarose conjugate reduced in vitro acetyl-CoA carboxylase activity by 67%. Furthermore, while acetyl-CoA carboxylase activity and its carboxyltransferase half-reaction were reduced in dephosphorylated extracts, the biotin carboxylase half-reaction was not inhibited. The evidence presented here points to the carboxyltransferase β-subunit of chloroplast acetyl-CoA carboxylase as a candidate for regulation by protein phosphorylation/dephosphorylation.  相似文献   

6.
Biotinyl proteins were labelled by incubation of SDS-denatured preparations of subcellular fractions of rat liver with [14C]methylavidin before polyacrylamide-gel electrophoresis. Fluorographic analysis showed that mitochondria contained two forms of acetyl-CoA carboxylase [acetyl-CoA:carbon dioxide ligase (ADP-forming) EC 6.4.1.2], both of which were precipitated by antibody to the enzyme. When both forms were considered, almost three-quarters of the total liver acetyl-CoA carboxylase was found in the mitochondrial fraction of liver from fed rats while only 3.5% was associated with the microsomal fraction. The remainder was present in cytosol, either as the intact active enzyme or as a degradation product. The actual specific activity of the cytosolic enzyme was approx. 2 units/mg of acetyl-CoA carboxylase protein while that of the mitochondrial enzyme was about 20-fold lower, indicating that mitochondrial acetyl-CoA carboxylase was relatively inactive. Fractionation of mitochondria with digitonin showed that acetyl-CoA carboxylase was associated with the outer mitochondrial membrane. The available evidence suggests that mitochondrial acetyl-CoA carboxylase represents a reservoir of enzyme which can be released and activated under lipogenic conditions.  相似文献   

7.
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.  相似文献   

8.
We have previously shown that bolus intravenous administration of tumor necrosis factor (TNF) to normal rats results in a rapid (within 90 min) stimulation of hepatic fatty acid synthesis, which is sustained for 17 hr. We now demonstrate that TNF stimulates fatty acid synthesis by several mechanisms. Fatty acid synthetase and acetyl-CoA carboxylase (measured after maximal stimulation by citrate) were not higher in livers from animals that had been treated with TNF 90 min before study compared to controls. In contrast, 16 hr after treatment with TNF, fatty acid synthetase was slightly elevated (35%) while acetyl-CoA carboxylase was increased by 58%. To explain the early rise in the hepatic synthesis of fatty acids, we examined the regulation of acetyl-CoA carboxylase. The acute increase in fatty acid synthesis was not due to activation of acetyl-CoA carboxylase by change in its phosphorylation state (as calculated by the ratio of activity in the absence and presence of 2 mM citrate). However, hepatic levels of citrate, an allosteric activator of acetyl-CoA carboxylase, were significantly elevated (51%) within 90 min of TNF treatment. TNF also induces an acute increase (within 90 min) in the plasma levels of free fatty acids. However, hepatic levels of fatty acyl-CoA, which can inhibit acetyl-CoA carboxylase, did not rise 90 min following TNF treatment and were 35% lower than in control livers by 16 hr after TNF. These data suggest that TNF acutely regulates hepatic fatty acid synthesis in vivo by raising hepatic levels of citrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1. A method is described for extracting separately mitochondrial and extramitochondrial enzymes from fat-cells prepared by collagenase digestion from rat epididymal fat-pads. The following distribution of enzymes has been observed (with the total activities of the enzymes as units/mg of fat-cell DNA at 25 degrees C given in parenthesis). Exclusively mitochondrial enzymes: glutamate dehydrogenase (1.8), NAD-isocitrate dehydrogenase (0.5), citrate synthase (5.2), pyruvate carboxylase (3.0); exclusively extramitochondrial enzymes: glucose 6-phosphate dehydrogenase (5.8), 6-phosphogluconate dehydrogenase (5.2), NADP-malate dehydrogenase (11.0), ATP-citrate lyase (5.1); enzymes present in both mitochondrial and extramitochondrial compartments: NADP-isocitrate dehydrogenase (3.7), NAD-malate dehydrogenase (330), aconitate hydratase (1.1), carnitine acetyltransferase (0.4), acetyl-CoA synthetase (1.0), aspartate aminotransferase (1.7), alanine aminotransferase (6.1). The mean DNA content of eight preparations of fat-cells was 109mug/g dry weight of cells. 2. Mitochondria showing respiratory control ratios of 3-6 with pyruvate, about 3 with succinate and P/O ratios of approaching 3 and 2 respectively have been isolated from fat-cells. From studies of rates of oxygen uptake and of swelling in iso-osmotic solutions of ammonium salts, it is concluded that fat-cell mitochondria are permeable to the monocarboxylic acids, pyruvate and acetate; that in the presence of phosphate they are permeable to malate and succinate and to a lesser extent oxaloacetate but not fumarate; and that in the presence of both malate and phosphate they are permeable to citrate, isocitrate and 2-oxoglutarate. In addition, isolated fat-cell mitochondria have been found to oxidize acetyl l-carnitine and, slowly, l-glycerol 3-phosphate. 3. It is concluded that the major means of transport of acetyl units into the cytoplasm for fatty acid synthesis is as citrate. Extensive transport as glutamate, 2-oxoglutarate and isocitrate, as acetate and as acetyl l-carnitine appears to be ruled out by the low activities of mitochondrial aconitate hydratase, mitochondrial acetyl-CoA hydrolyase and carnitine acetyltransferase respectively. Pathways whereby oxaloacetate generated in the cytoplasm during fatty acid synthesis by ATP-citrate lyase may be returned to mitochondria for further citrate synthesis are discussed. 4. It is also concluded that fat-cells contain pathways that will allow the excess of reducing power formed in the cytoplasm when adipose tissue is incubated in glucose and insulin to be transferred to mitochondria as l-glycerol 3-phosphate or malate. When adipose tissue is incubated in pyruvate alone, reducing power for fatty acid, l-glycerol 3-phosphate and lactate formation may be transferred to the cytoplasm as citrate and malate.  相似文献   

10.
The short-term regulation of rat liver acetyl-CoA carboxylase by glucagon has been studied in hepatocytes from rats that had been fasted and refed a fat-free diet. Glucagon inhibition of the activity of this enzyme can be accounted for by a direct correlation between phosphorylation, polymer-protomer ratio, and activity. Glucagon rapidly inactivates acetyl-CoA carboxylase with an accompanying 4-fold increase in the phosphorylation of the enzyme and 3-fold increase in the protomer-polymer ratio of enzyme protein. Citrate, an allosteric activator of acetyl-CoA carboxylase required for enzyme activity, has no effect on these phenomena, indicating a mechanism that is independent of citrate concentration within the cell. The observation of these effects of glucagon on acetyl-CoA carboxylase activity is absolutely dependent upon the minimization of proteolytic degradation of the enzyme after cell lysis. Therefore, for the first time, an interrelationship has been demonstrated between phosphorylation, protomer-polymer ratio, and citrate for the inactivation of acetyl-CoA carboxylase by glucagon.  相似文献   

11.
Hepatocytes from rainbow trout reared on a diet containing cyclopropenoid fatty acids were analyzed for alterations in protein composition and synthesis by double label experiments. Both cytosolic and microsomal hepatocyte fractions were investigated. In the cytosolic fraction, the synthesis of proteins in the range of 68,000 to 74,000 daltons were significantly decreased. The identity of these proteins remains uncertain. A pronounced depression in both the mass and apparent synthesis of a 200,000 to 240,000 dalton microsomal protein was also observed. Immunoblotting with antibodies raised against goose acetyl-CoA carboxylase and avidin-peroxidase staining suggest that this protein is acetyl-CoA carboxylase. Moreover, synthesis of this protein as well as mass of the protein in cyclopropenoid fatty acid-fed fish were less than 20% of that found in control fish.  相似文献   

12.
During the formation of rape-seeds, lipid accumulated in the cotyledons from 16 days after pollination, rising to a plateau after 28 days. The accumulation of lipid was preceded by a marked rise in acetyl-CoA carboxylase activity, which declined rapidly, correlating with the decline in rate of lipid formation. Incubation of rape-seed extracts with avidin-agarose resulted in a decrease in acetyl-CoA carboxylase activity in the extract. Polyacrylamide-gel electrophoresis of polypeptides bound to avidin-agarose showed the presence of a polypeptide of Mr 225 000. The intensity of this band increased during the period of increase of acetyl-CoA carboxylase activity in the seeds.  相似文献   

13.
The pathway of autotrophic CO2 fixation was studied in the phototrophic bacterium Chloroflexus aurantiacus and in the aerobic thermoacidophilic archaeon Metallosphaera sedula. In both organisms, none of the key enzymes of the reductive pentose phosphate cycle, the reductive citric acid cycle, and the reductive acetyl coenzyme A (acetyl-CoA) pathway were detectable. However, cells contained the biotin-dependent acetyl-CoA carboxylase and propionyl-CoA carboxylase as well as phosphoenolpyruvate carboxylase. The specific enzyme activities of the carboxylases were high enough to explain the autotrophic growth rate via the 3-hydroxypropionate cycle. Extracts catalyzed the CO2-, MgATP-, and NADPH-dependent conversion of acetyl-CoA to 3-hydroxypropionate via malonyl-CoA and the conversion of this intermediate to succinate via propionyl-CoA. The labelled intermediates were detected in vitro with either 14CO2 or [14C]acetyl-CoA as precursor. These reactions are part of the 3-hydroxypropionate cycle, the autotrophic pathway proposed for C. aurantiacus. The investigation was extended to the autotrophic archaea Sulfolobus metallicus and Acidianus infernus, which showed acetyl-CoA and propionyl-CoA carboxylase activities in extracts of autotrophically grown cells. Acetyl-CoA carboxylase activity is unexpected in archaea since they do not contain fatty acids in their membranes. These aerobic archaea, as well as C. aurantiacus, were screened for biotin-containing proteins by the avidin-peroxidase test. They contained large amounts of a small biotin-carrying protein, which is most likely part of the acetyl-CoA and propionyl-CoA carboxylases. Other archaea reported to use one of the other known autotrophic pathways lacked such small biotin-containing proteins. These findings suggest that the aerobic autotrophic archaea M. sedula, S. metallicus, and A. infernus use a yet-to-be-defined 3-hydroxypropionate cycle for their autotrophic growth. Acetyl-CoA carboxylase and propionyl-CoA carboxylase are proposed to be the main CO2 fixation enzymes, and phosphoenolpyruvate carboxylase may have an anaplerotic function. The results also provide further support for the occurrence of the 3-hydroxypropionate cycle in C. aurantiacus.  相似文献   

14.
15.
When purified acetyl-CoA carboxylase was incubated with various phospholipids, the effects on carboxylase activity were quite diverse. Phosphatidic acid, phosphatidylcholine, and phosphatidylinositol were slightly stimulatory, whereas carboxylase was inhibited by polyphosphoinositides in a time- and concentration-dependent manner. Phosphatidylinositol 4,5-bisphosphate (TPI) was the most effective inhibitor; carboxylase activity was inhibited 50% after incubation with 1.5 μm TPI for 30 min. Incubation of carboxylase with citrate reduced the susceptibility to inhibition by TPI. The inhibition was reversed by removal of TPI from the inhibited enzyme. Incubation of TPI with divalent metal cations removed its ability to inhibit carboxylase. Sedimentation studies showed that TPI treatment shifts carboxylase to a less-polymerized form. The Km for ATP, 24 μm, was not affected by the inhibitor. However, the apparent Km for acetyl-CoA was decreased from 44 to 11 μm following incubation with TPI. The possibility that polyphosphoinositides may play a role in acetyl-CoA carboxylase regulation is discussed.  相似文献   

16.
Poly(A)+ RNA from lactating rat mammary glands was fractionated according to size by isokinetic sucrose gradient centrifugation to obtain a fraction enriched for acetyl-CoA carboxylase. In vitro translation of this RNA preparation yielded apparent full-length acetyl-CoA carboxylase with a molecular weight of 260,000. The synthesized protein was identified as acetyl-CoA carboxylase by specific immunoprecipitation. Tests with antiserum to fatty acid synthetase, revealed that the fractions containing acetyl-CoA carboxylase mRNA also contained mRNA for fatty acid synthetase; both of these mRNAs were approximately 10 kb. Fatty acid synthetase with a molecular weight of 250,000 was synthesized. Using an in vitro rabbit reticulocyte lysate translation system, we have shown that the amount of translatable acetyl-CoA carboxylase mRNA increases during lactation. On the fifth day postpartum the level of translatable acetyl-CoA carboxylase mRNA increased to a peak level seven times that on the day of parturition.  相似文献   

17.
We measured acetyl-CoA carboxylase mRNA levels in various tissues of the rat under different nutritional and hormonal states using a cDNA probe. We surveyed physiological conditions which are known to alter carboxylase activity, and thus fatty acid synthesis, to determine whether changes in the levels of carboxylase mRNA are involved. The present studies include the effects of fasting and refeeding, diabetes and insulin, and lactation on carboxylase mRNA levels. Northern blot analysis of liver RNA revealed that fasting followed by refeeding animals a fat-free (high carbohydrate) diet dramatically increased the amount of carboxylase mRNA compared to the fasted condition. These changes in the level of mRNA correspond to changes in the activity and amount of acetyl-CoA carboxylase. Acetyl-CoA carboxylase mRNA levels in epididymal fat tissue decreased upon fasting and increased to virtually normal levels after 72 h of refeeding, closely resembling the liver response. The amount of acetyl-CoA carboxylase mRNA decreased markedly in epididymal fat tissue of diabetic rats as compared to nondiabetic animals. However, 6 h after injection of insulin the mRNA level returned to that of the nondiabetic animals. Gestation and lactation also affected the levels of carboxylase mRNA in both liver and mammary gland. Maximum induction in both tissues occurred 5 days postpartum. These studies suggest that these diverse physiological conditions affect fatty acid synthesis in part by altering acetyl-CoA carboxylase gene expression.  相似文献   

18.
The formation of malonyl-CoA in rat heart is catalyzed by cytosolic acetyl-CoA carboxylase. The existence of this enzyme in heart is difficult to prove by the abundant occurrence of mitochondrial propionyl-CoA carboxylase, which is also able to catalyze the carboxylation of acetyl-CoA. We used the calcium paradox as a tool to separate cytosolic components from the remaining heart, and found that acetyl-CoA carboxylase activity was preferentially released, like lactate dehydrogenase and carnitine, while propionyl-CoA carboxylase was almost fully retained. Acetyl-CoA carboxylase activity was determined after activation by citrate ion and Mg2+. The activity decreased to 64% by 48 h of fasting.  相似文献   

19.
The process leading to the rise of acetyl-CoA carboxylase activity in rat mammary tissue after the onset of lactation was investigated. The kinetics of change in enzyme activity and enzyme immunotitratable with antibody against avian liver acetyl-CoA carboxylase were determined during the course of lactogenic differentiation. The antibody inactivates and specifically precipitates acetyl-CoA carboxylase from rat mammary tissue as well as that from chicken liver cytosol. Characterization of the immunoprecipitate of the mammary tissue carboxylase by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis reveals a single biotin-containing polypeptide of about 230000mol.wt. This molecular weight is approximately twice that reported for the avian liver enzyme. However, chicken liver cytosol prepared in the presence of trypsin inhibitor and subjected to immunoprecipitation gives rise to a biotin-containing subunit of 230000mol.wt. as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; omission of proteinase inhibitor leads to a subunit(s) approximately one-half this size. Throughout gestation both carboxylase activity and amounts of immunotitratable enzyme remained low; however, after parturition both parameters rose concomitantly to values 30-40 times the initial values. Therefore the elevated concentration of acetyl-CoA carboxylase appears to result from an increased rate of synthesis of enzyme relative to degradation rather than to activation of a pre-existing form of the enzyme.  相似文献   

20.
Effect of citrate on acetyl-CoA incorporation into mevalonic acid, sterols and fatty acids after preliminary incubation of rat liver extracts under conditions optimal for acetyl-CoA carboxylase activation, was studied. 30 min preincubation with the citrate at 37 degrees C results in a 2--3-fold stimulation of the mevalonic acid biosynthesis from acetyl-CoA in the microsomal and soluble (140 000 g) fraction, and in that of sterols precipitated by digitonin or isolated by TLC in the mitochondria--free fraction. 2-14C-malonyl-CoA incorporation into the mevalonic acid and sterols and biosynthesis of sterols from 2-14C-mevalonic acid were not stimulated under those conditions. A correlation was shown to exist between the activity of acetyl-CoA carboxylase and the rate of acetyl-CoA incorporation into mevalonate and sterols; the activity of beta-hydroxy-beta-methylglutaryl-CoA reductase, limiting the rate of the sterol biosynthesis, was not changed. The stimulating effect of citrate was found to depend on the concentration of acetyl-CoA and NADPH in the medium. The data obtained suggest that the mevalonic acid biosynthesis in rat liver may occur in the presence of acetyl-CoA carboxylase through the formation of malonyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号