首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Producers of cereulide, the emetic toxin of Bacillus cereus, are known to constitute a specific subset within this species. We investigated physiological and genetic properties of 24 strains of B. cereus including two high cereulide producers (600–1,800 ng cereulide mg−1 wet weight biomass), seven average producers (180–600 ng cereulide mg−1 wet weight biomass), four low cereulide producers (20–160 ng cereulide mg−1 wet weight biomass) and 11 non-producers representing isolates from food, food poisoning, human gut and environment. The 13 cereulide producers possessed 16S rRNA gene sequences identical to each other and identical to that of B. anthracis strains Ames, Sterne from GenBank and strain NC 08234–02, but showed diversity in the adk gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three types of patterns), in tyrosin decomposition, haemolysis and lecithin hydrolysis (two phenotypes). The cereulide-producing isolates from the human gut represented two ribopatterns of which one was novel to cereulide-producing B. cereus and two phenotypes. We conclude that the cereulide-producing B. cereus are genetically and biochemically more diverse than hitherto thought.  相似文献   

2.
This paper describes a quantitative and sensitive chemical assay for cereulide, the heat-stable emetic toxin produced by Bacillus cereus. The methods previously available for measuring cereulide are bioassays that give a toxicity titer, but not an accurate concentration. The dose of cereulide causing illness in humans is therefore not known, and thus safety limits for cereulide cannot be indicated. We developed a quantitative and sensitive chemical assay for cereulide based on high-performance liquid chromatography (HPLC) connected to ion trap mass spectrometry. This chemical assay and a bioassay based on boar sperm motility inhibition were calibrated with purified cereulide and with valinomycin, a structurally similar cyclic depsipeptide. The boar spermatozoan motility assay and chemical assay gave uniform results over a wide range of cereulide concentrations, ranging from 0.02 to 230 μg ml−1. The detection limit for cereulide and valinomycin by HPLC-mass spectrometry was 10 pg per injection. The combined chemical and biological assays were used to define conditions and concentrations of cereulide formation by B. cereus strains F4810/72, NC7401, and F5881. Cereulide production commenced at the end of logarithmic growth, but was independent of sporulation. Production of cereulide was enhanced by incubation with shaking compared to static conditions. The three emetic B. cereus strains accumulated 80 to 166 μg of cereulide g−1 (wet weight) when grown on solid medium. Strain NC7401 accumulated up to 25 μg of cereulide ml−1 in liquid medium at room temperature (21 ± 1°C) in 1 to 3 days, during the stationary growth phase when cell density was 2 × 108 to 6 × 108 CFU ml−1. Cereulide production at temperatures at and below 8°C or at 40°C was minimal.  相似文献   

3.
Of the toxins produced by Bacillus cereus, the emetic toxin is likely the most dangerous but, due to the lack of a suitable assay, the least well known. In this paper, a new, sensitive, inexpensive, and rapid bioassay for detection of the emetic toxin of B. cereus is described. The assay is based on the loss of motility of boar spermatozoa upon 24 h of exposure to extracts of emetic B. cereus strains or contaminated food. The paralyzed spermatozoa exhibited swollen mitochondria, but no depletion of cellular ATP or damage to plasma membrane integrity was observed. Analysis of the purified toxin by electrospray tandem mass spectrometry showed that it was a dodecadepsipeptide with a mass fragmentation pattern similar to that described for cereulide. The 50% effective concentration of the purified toxin to boar spermatozoa was 0.5 ng of purified toxin ml of extended boar semen−1. This amount corresponds to 104 to 105 CFU of B. cereus cells. No toxicity was detected for 27 other B. cereus strains up to 108 CFU ml−1. The detection limit for food was 3 g of rice containing 106 to 107 CFU of emetic B. cereus per gram. Effects similar to those provoked by emetic B. cereus toxin were also induced in boar spermatozoa by valinomycin and gramicidin at 2 and 3 ng ml of extended boar semen−1, respectively. The symptoms provoked by the toxin in spermatozoa indicated that B. cereus emetic toxin was acting as a membrane channel-forming ionophore, damaging mitochondria and blocking the oxidative phosphorylation required for the motility of boar spermatozoa.  相似文献   

4.
Cyclic AMP-activated intestinal Cl secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl secretion in human intestinal epithelial (T84) cells with IC50 of ∼20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl current showed that diclofenac reversibly inhibited CFTR Cl channel activity (IC50∼10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na+-K+ ATPases and Na+-K+-Cl cotransporters, but inhibited cAMP-activated basolateral K+ channels with IC50 of ∼3 µM. In addition, diclofenac suppressed Ca2+-activated Cl channels, inwardly rectifying Cl channels, and Ca2+-activated basolateral K+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca2+-activated Cl secretion by inhibiting both apical Cl channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal hypersecretion of Cl.  相似文献   

5.
A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 μM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 μM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 μg ml−1). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 μg ml−1) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 μg ml−1). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 μM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 μg ml−1) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.  相似文献   

6.
Current-voltage curves for DIDS-insensitive Cl conductance have been determined in human red blood cells from five donors. Currents were estimated from the rate of cell shrinkage using flow cytometry and differential laser light scattering. Membrane potentials were estimated from the extracellular pH of unbuffered suspensions using the proton ionophore FCCP. The width of the Gaussian distribution of cell volumes remained invariant during cell shrinkage, indicating a homogeneous Cl conductance among the cells. After pretreatment for 30 min with DIDS, net effluxes of K+ and Cl were induced by valinomycin and were measured in the continued presence of DIDS; inhibition was maximal at ∼65% above 1 μM DIDS at both 25°C and 37°C. The nonlinear current-voltage curves for DIDS-insensitive net Cl effluxes, induced by valinomycin or gramicidin at varied [K+]o, were compared with predictions based on (1) the theory of electrodiffusion, (2) a single barrier model, (3) single occupancy, multiple barrier models, and (4) a voltage-gated mechanism. Electrodiffusion precisely describes the relationship between the measured transmembrane voltage and [K+]o. Under our experimental conditions (pH 7.5, 23°C, 1–3 μM valinomycin or 60 ng/ml gramicidin, 1.2% hematocrit), the constant field permeability ratio PK/PCl is 74 ± 9 with 10 μM DIDS, corresponding to 73% inhibition of PCl. Fitting the constant field current-voltage equation to the measured Cl currents yields P Cl = 0.13 h−1 with DIDS, compared to 0.49 h−1 without DIDS, in good agreement with most previous studies. The inward rectifying DIDS-insensitive Cl current, however, is inconsistent with electrodiffusion and with certain single-occupancy multiple barrier models. The data are well described either by a single barrier located near the center of the transmembrane electric field, or, alternatively, by a voltage-gated channel mechanism according to which the maximal conductance is 0.055 ± 0.005 S/g Hb, half the channels are open at −27 ± 2 mV, and the equivalent gating charge is −1.2 ± 0.3.  相似文献   

7.
A circadian rhythm in the intracellular level of K+ in Gonyaulax polyedra is reported. When axenic cultures of Gonyaulax in continuous light (60-75 fot candles) are exposed for 4 hours to 0.1 or 0.2% ethanol, the subsequent free-running rhythm in stimulated bioluminescence is phase-shifted, the amount and direction of the shift being dependent on the time in the circadian cycle when cells are treated. The phase-response curve for ethanol closely resembles that for light in similarly maintained cells. When valinomycin (0.1 or 0.2 μg ml−1) is present in addition to ethanol, the phase of the bioluminescence rhythm is returned to that of an untreated cell suspension. Valinomycin thus negates the effect of ethanol on phase. The intracellular K+ level immediately after treatment of a cell suspension for 4 hours with ethanol (0.1%) is about half that of untreated cells. If valinomycin (0.1 μg ml−1) is also present during the 4-hour treatment, the intracellular K+ is only slightly lower than in untreated cells. Increasing the external concentration of K+ or Na+ for 4 hours has no effect on the rhythm of stimulated bioluminescence. These results are interpreted as support for the hypothesis that the mechanism by which circadian oscillations are generated involves changes in membrane properties.  相似文献   

8.
The neuropeptide Phe-Met-Arg-Phe-amide (FMRFa) dose dependently (ED50 = 23 nM) activated a K+ current in the peptidergic caudodorsal neurones that regulate egg laying in the mollusc Lymnaea stagnalis. Under standard conditions ([K+]o = 1.7 mM), only outward current responses occurred. In high K+ salines ([K+]o = 20 or 57 mM), current reversal occurred close to the theoretical reversal potential for K+. In both salines, no responses were measured below −120 mV. Between −120 mV and the K+ reversal potential, currents were inward with maximal amplitudes at ∼−60 mV. Thus, U-shaped current–voltage relations were obtained, implying that the response is voltage dependent. The conductance depended both on membrane potential and extracellular K+ concentration. The voltage sensitivity was characterized by an e-fold change in conductance per ∼14 mV at all [K+]o. Since this result was also obtained in nearly symmetrical K+ conditions, it is concluded that channel gating is voltage dependent. In addition, outward rectification occurs in asymmetric K+ concentrations. Onset kinetics of the response were slow (rise time ∼650 ms at −40 mV). However, when FMRFa was applied while holding the cell at −120 mV, to prevent activation of the current but allow activation of the signal transduction pathway, a subsequent step to −40 mV revealed a much more rapid current onset. Thus, onset kinetics are largely determined by steps preceding channel activation. With FMRFa applied at −120 mV, the time constant of activation during the subsequent test pulse decreased from ∼36 ms at −60 mV to ∼13 ms at −30 mV, confirming that channel opening is voltage dependent. The current inactivated voltage dependently. The rate and degree of inactivation progressively increased from −120 to −50 mV. The current is blocked by internal tetraethylammonium and by bath- applied 4-aminopyridine, tetraethylammonium, Ba2+, and, partially, Cd2+ and Cs+. The response to FMRFa was affected by intracellular GTPγS. The response was inhibited by blockers of phospholipase A2 and lipoxygenases, but not by a cyclo-oxygenase blocker. Bath-applied arachidonic acid induced a slow outward current and occluded the response to FMRFa. These results suggest that the FMRFa receptor couples via a G-protein to the lipoxygenase pathway of arachidonic acid metabolism. The biophysical and pharmacological properties of this transmitter operated, but voltage-dependent K+ current distinguish it from other receptor-driven K+ currents such as the S-current- and G-protein-dependent inward rectifiers.  相似文献   

9.
Actinomycete isolates from indoor air and dust in water-damaged schools and children’s day care centers were tested for toxicity by using boar spermatozoa as an indicator. Toxicity was detected in extracts of four strains which caused a loss of sperm motility, and the 50% effective concentrations (EC50) were 10 to 63 ng (dry weight) ml of extended boar semen−1. The four strains were identified as Streptomyces griseus strains by 16S ribosomal DNA and chemotaxonomic methods. The four S. griseus strains had similar effects on sperm cells, including loss of motility and swelling of mitochondria, but we observed no loss of plasma membrane integrity or depletion of cellular ATP. None of the effects was observed with sperm cells exposed to extracts of other indoor actinomycete isolates at concentrations of ≥5,000 to 72,000 ng ml−1. The toxin was purified from all four strains and was identified as a dodecadepsipeptide, and the fragmentation pattern obtained by tandem mass spectrometry was identical to that of valinomycin. Commercial valinomycin had effects in sperm cells that were identical to the effects of the four indoor isolates of S. griseus. The EC50 of purified toxin from the S. griseus strains were 1 to 3 ng ml of extended boar semen−1, and the EC50 of commercial valinomycin was 2 ng ml of extended boar semen−1. To our knowledge, this is the first report of the presence of ionophoric toxin producers in an indoor environment and the first report of valinomycin-producing strains identified as S. griseus.  相似文献   

10.
Bacille Calmette–Guérin (BCG) immunization provides variable protection against tuberculosis. Prenatal antigen exposure may have lifelong effects on responses to related antigens and pathogens. We therefore hypothesized that maternal latent Mycobacterium tuberculosis infection (LTBI) influences infant responses to BCG immunization at birth. We measured antibody (n = 53) and cellular (n = 31) responses to M. tuberculosis purified protein derivative (PPD) in infants of mothers with and without LTBI, in cord blood and at one and six weeks after BCG. The concentrations of PPD-specific antibodies declined between birth (median [interquartile range (IQR)]) 5600 ng ml−1 [3300–11 050] in cord blood) and six weeks (0.00 ng ml−1 [0–288]). Frequencies of PPD-specific IFN-γ-expressing CD4+T cells increased at one week and declined between one and six weeks (p = 0.031). Frequencies of IL-2- and TNF-α-expressing PPD-specific CD4+T cells increased between one and six weeks (p = 0.019, p = 0.009, respectively). At one week, the frequency of PPD-specific CD4+T cells expressing any of the three cytokines, combined, was lower among infants of mothers with LTBI, in crude analyses (p = 0.002) and after adjusting for confounders (mean difference, 95% CI −0.041% (−0.082, −0.001)). In conclusion, maternal LTBI was associated with lower infant anti-mycobacterial T-cell responses immediately following BCG immunization. These findings are being explored further in a larger study.  相似文献   

11.
Toxin-producing isolates of Bacillus licheniformis were obtained from foods involved in food poisoning incidents, from raw milk, and from industrially produced baby food. The toxin detection method, based on the inhibition of boar spermatozoan motility, has been shown previously to be a sensitive assay for the emetic toxin of Bacillus cereus, cereulide. Cell extracts of the toxigenic B. licheniformis isolates inhibited sperm motility, damaged cell membrane integrity, depleted cellular ATP, and swelled the acrosome, but no mitochondrial damage was observed. The responsible agent from the B. licheniformis isolates was partially purified. It showed physicochemical properties similar to those of cereulide, despite having very different biological activity. The toxic agent was nonproteinaceous; soluble in 50 and 100% methanol; and insensitive to heat, protease, and acid or alkali and of a molecular mass smaller than 10,000 g mol−1. The toxic B. licheniformis isolates inhibited growth of Corynebacterium renale DSM 20688T, but not all inhibitory isolates were sperm toxic. The food poisoning-related isolates were beta-hemolytic, grew anaerobically and at 55°C but not at 10°C, and were nondistinguishable from the type strain of B. licheniformis, DSM 13T, by a broad spectrum of biochemical tests. Ribotyping revealed more diversity; the toxin producers were divided among four ribotypes when cut with PvuII and among six when cut with EcoRI, but many of the ribotypes also contained nontoxigenic isolates. When ribotyped with PvuII, most toxin-producing isolates shared bands at 2.8 ± 0.2, 4.9 ± 0.3, and 11.7 ± 0.5 or 13.1 ± 0.8 kb.  相似文献   

12.
Effect of diethylstilbestrol on ion fluxes in oat roots   总被引:10,自引:5,他引:5       下载免费PDF全文
Effects of diethylstilbestrol (DES) on ion fluxes in oat roots (Avena sativa L.) were investigated by measuring K+ and Cl absorption and K+ efflux. DES rapidly decreased the absorption of K+ (86Rb) and 36Cl by excised roots; 10−4 molar DES inhibited Cl absorption in 1 minute and K+ absorption in 1 to 2 minutes. With a 10-minute incubation period, K+ and Cl absorption were inhibited 50% by 1.1×10−5 molar and 8.4×10−6 molar DES, respectively. Treatment for 3 minutes with 10−4 molar DES caused irreversible inhibition of K+ absorption. Increasing concentrations of KCl in the absorption media decreased the DES inhibition. Experiments with the DES analogs, DES dipropionate, dienestrol and hexestrol, showed that the steric configuration and the hydroxyl group of the DES molecule are important in determining the inhibitory capacity of the compound.  相似文献   

13.
To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.  相似文献   

14.
The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles.  相似文献   

15.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

16.
Three microtitration plate enzyme-linked immunosorbent assays (ELISAs) have been developed: a competitive ELISA and a two-site (or indirect sandwich) ELISA for Methanosarcina mazei S6 and a two-site ELISA for Methanobacterium bryantii FR-2. The assays were sensitive, with limits of cell protein detection of 3 ng ml−1, 5 ng ml−1, and 50 ng ml−1, respectively, and showed good precision. The M. mazei assays used monoclonal antibodies and were entirely species specific, showing no cross-reaction with methanogens of other genera or with other species of the same genus. The Methanobacterium bryantii assay, which used two polyclonal antisera, showed only a slight cross-reaction with one other Methanobacterium species but no cross-reaction with methanogens of other genera. The use of the ELISAs for quantitative analysis of mixed cultures and of sewage sludge samples was investigated. Sludge diluted at 1:103 or more caused no significant interference in any of the three ELISAs. Various cultures of bacteria, methanogens, and nonmethanogens at a protein concentration of 50 μg ml−1 showed no significant interference in the M. mazei competitive assay and the Methanobacterium bryantii two-site assay, although they did cause falsely low results in the M. mazei two-site assay.  相似文献   

17.
The bacterium Yersinia entomophaga is pathogenic to a range of insect species, with death typically occurring within 2 to 5 days of ingestion. Per os challenge of larvae of the greater wax moth (Galleria mellonella) confirmed that Y. entomophaga was virulent when fed to larvae held at 25°C but was avirulent when fed to larvae maintained at 37°C. At 25°C, a dose of ∼4 × 107 CFU per larva of a Y. entomophaga toxin complex (Yen-TC) deletion derivative, the Y. entomophaga ΔTC variant, resulted in 27% mortality. This low level of activity was restored to near-wild-type levels by augmentation of the diet with a sublethal dose of purified Yen-TC. Intrahemocoelic injection of ∼3 Y. entomophaga or Y. entomophaga ΔTC cells per larva gave a 4-day median lethal dose, with similar levels of mortality observed at both 25 and 37°C. Following intrahemocoelic injection of a Yen-TC YenA1 green fluorescent protein fusion strain into larvae maintained at 25°C, the bacteria did not fluoresce until the population density reached 2 × 107 CFU ml−1 of hemolymph. The observed cells also took an irregular form. When the larvae were maintained at 37°C, the cells were small and the observed fluorescence was sporadic and weak, being more consistent at a population density of ∼3 × 109 CFU ml−1 of hemolymph. These findings provide further understanding of the pathobiology of Y. entomophaga in insects, showing that the bacterium gains direct access to the hemocoelic cavity, from where it rapidly multiplies to cause disease.  相似文献   

18.
19.
The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l−1) and accumulate ammonia to high concentrations in its brain (∼4.5 µmol g−1). Na+/K+-ATPase (Nka) is an essential transporter in brain cells, and since NH4 + can substitute for K+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4 + to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na+/K+-ATPase and Na+/NH4 +-ATPase activities over a range of K+/NH4 + concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b) were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l−1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na+/NH4 +-ATPase activities were significantly lower than the Na+/K+-ATPase activities assayed at various NH4 +/K+ concentrations. Furthermore, the effectiveness of NH4 + to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1) lack of nkaα2 expression, (2) high K+ specificity of K+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3) down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.  相似文献   

20.
In India the sand fly, Phlebotomus argentipes, transmitted parasitic disease termed kala-azar is caused by Leishmania donovani (LD) in humans. These immune-evading parasites have increasingly developed resistance to the drug sodium antimony gluconate in endemic regions.Lack of early diagnosis methods for the disease limits the information available regarding the early interactions of this parasite with either human tissues or cell lineages. We reasoned that peripheral blood mononuclear cells (PBMCs) from healthy human beings could help compare some of their immune signatures once they were exposed for up to 8 days, to either pentavalent antimony sensitive (SbS-LD) or resistant (SbR-LD) Leishmania donovani isolates.At day 2, PBMC cultures exposed to SbS-LD and SbR-LD stationary phase promastigotes had four and seven fold higher frequency of IL-10 secreting monocyte-macrophage respectively, compared to cultures unexposed to parasites. Contrasting with the CD4+CD25CD127 type-1 T-regulatory (Tr1) cell population that displayed similar features whatever the culture conditions, there was a pronounced increase in the IL-10 producing CD4+CD25+CD127low/− inducible T-regulatory cells (iTregs) in the PBMC cultures sampled at day 8 post addition of SbR-LD.Sorted iTregs from different cultures on day 8 were added to anti-CD3/CD28 induced naïve PBMCs to assess their suppressive ability. We observed that iTregs from SbR-LD exposed PBMCs had more pronounced suppressive ability compared to SbS-LD counterpart on a per cell basis and is dependent on both IL-10 and TGF-β, whereas IL-10 being the major factor contributing to the suppressive ability of iTregs sorted from PBMC cultures exposed to SbS–LD. Of note, iTreg population frequency value remained at the basal level after addition of genetically modified SbR-LD lacking unique terminal sugar in surface glycan.Even with limitations of this artificial in vitro model of L. donovani-human PBMC interactions, the present findings suggest that SbR-LD have higher immunomodulatory capacity which may favour aggressive pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号