首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An advanced electro-active dry adhesive,which was composed of a mushroom-shaped fibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs),was developed to imitate the actuation of a gecko's toe.The properties of the NCNC-reinforced Nafion membrane,the electromechanical properties of the NCNC-reinforced IPMC,and the related electro-active adhesion ability were investigated.The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane,and there was a seamless connection with no clear interface between the dry adhesive and the IPMC.Our 0.1 wt% NCNC/Nafion-IPMC actuator shows a displacement and force that are 1.6-2 times higher than those of the recast Nafion-IPMC.This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nafion membrane,as well as interactions between the NCNCs and the sulfonated groups of the Nafion.The NCNC/Nafion-IPMC was used to effectively actuate the mushroom-shaped dry adhesive.The normal adhesion forces were 7.85 mN,12.1 mN,and 51.7 mN at sinusoidal voltages of 1.5 V,2.5 V,and 3.5 V,respectively,at 0.1 Hz.Under the bionic leg trail,the normal and shear forces were approximately 713.5 mN (159 mN·cm-2) and 1256.6 mN (279 mN·cm-2),respectively,which satisfy the required adhesion.This new electro-active dry adhesive can be applied for active,distributed actuation and flexible grip in robots.  相似文献   

2.
Carbon nanotubes (CNTs) are widely manufactured nanoparticles, which are being utilized in a number of consumer products, such as sporting goods, electronics and biomedical applications. Due to their accelerating production and use, CNTs constitute a potential environmental risk if they are released to soil and groundwater systems. It is therefore essential to improve the current understanding of environmental fate and transport of CNTs. The transport and retention of CNTs in both natural and artificial media have been reported in literature, but the findings widely vary and are thus not conclusive. There are a number of physical and chemical parameters responsible for variation in retention and transport. In this study, a complete procedure of selected multiwalled carbon nanotubes (MWCNTs) is presented starting from their surface modification to a complete set of laboratory column experiments at critical physical and chemical scenarios. Results indicate that the stability of the commercially available MWCNTs are critical with their attached surface functional group which can also influence the transport and retention of MWCNT through the surrounding medium.  相似文献   

3.
Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock‐copolymer‐templating method. Pluronic F127 is used as a structure‐directing agent, with a low‐molecular‐weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small‐angle XRD and N2 sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area (~1300 m2/g), and large pore volumes (~1.50 cm3/g) after low‐temperature pyrolysis (900 °C). All surface areas come from mesopores. Wide‐angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp2 carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular‐shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures.  相似文献   

4.
In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV–Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.  相似文献   

5.
金纳米粒由于其良好的化学惰性、生物相容性、表面易修饰性和独特的光学性质被广泛用于生物医药领域。综述粒径对金纳米粒 在光学性质、细胞水平、体内环境等方面影响的研究进展,为以金纳米粒为基础的检测、治疗和诊断系统的构建提供参考。  相似文献   

6.
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity.To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.  相似文献   

7.
Li X  Shen L  Zhang D  Qi H  Gao Q  Ma F  Zhang C 《Biosensors & bioelectronics》2008,23(11):1624-1630
A simple and highly sensitive electrochemical impedance spectroscopy (EIS) biosensor based on a thrombin-binding aptamer as molecular recognition element was developed for the determination of thrombin. The signal enhancement was achieved by using gold nanoparticles (GNPs), which was electrodeposited onto a glassy carbon electrode (GCE), as a platform for the immobilization of the thiolated aptamer. In the measurement of thrombin, the change in interfacial electron transfer resistance of the biosensor using a redox couple of [Fe(CN)6]3−/4− as the probe was monitored. The increase of the electron transfer resistance of the biosensor is linear with the concentration of thrombin in the range from 0.12 nM to 30 nM. The association and dissociation rate constants of the immobilized aptamer–thrombin complex were 6.7 × 103 M−1 s−1 and 1.0 × 10−4 s−1, respectively. The association and dissociation constants of three different immobilized aptamers binding with thrombin were measured and the difference of the dissociation constants obtained was discussed. This work demonstrates that GNPs electrodeposited on GCE used as a platform for the immobilization of the thiolated aptamer can improve the sensitivity of an EIS biosensor for the determination of protein. This work also demonstrates that EIS method is an efficient method for the determination of association and dissociation constants on GNPs modified GCE.  相似文献   

8.
A nonenzymatic electrochemical sensor device was fabricated for glucose detection based on nickel nanoparticles (NiNPs)/straight multi-walled carbon nanotubes (SMWNTs) nanohybrids, which were synthesized through in situ precipitation procedure. SMWNTs can be easily dispersed in solution after mild sonication pretreatment, which facilitates the precursor of NiNPs binding to their surface and results in the homogeneous distribution of NiNPs on the surface of SMWNTs. The morphology and component of the nanohybrids were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD), respectively. Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNPs/SMWNTs nanohybrids modified electrode towards glucose. It was found that the nanohybrids modified electrode showed remarkably enhanced electrocatalytic activity towards the oxidation of glucose in alkaline solution compared to that of the bare glass carbon electrode (GCE), the NiNPs and the SMWNTs modified electrode, attributing to the synergistic effect of SMWNTs and Ni2+/Ni3+ redox couple. Under the optimal detection conditions, the as-prepared sensors exhibited linear behavior in the concentration range from 1 μM to 1 mM for the quantification of glucose with a limit of detection of 500 nM (3σ). Moreover, the NiNPs/SMWNTs modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA), galactose (GA), and xylose (XY). The robust selectivities, sensitivities, and stabilities determined experimentally indicated the great potential of NiNPs/SMWNTs nanohybrids for construction of a variety of electrochemical sensors.  相似文献   

9.
Silicon solar cells among different types of solar energy harvesters have entered the commercial market owing to their high power conversion efficiency and stability. By replacing the electrode and the p‐type layer by a single layer of carbon nanotubes, the device can be further simplified. This greatly augments the attractiveness of silicon solar cells in the light of raw material shortages and the solar payback period, as well as lowering the fabrication costs. However, carbon nanotube‐based silicon solar cells still lack device efficiency and stability. These can be improved by chemical doping, antireflection coating, and encapsulation. In this work, the multifunctional effects of p‐doping, antireflection, and encapsulation are observed simultaneously, by applying a polymeric acid. This method increases the power conversion efficiency of single‐walled carbon nanotube‐based silicon solar cells from 9.5% to 14.4% and leads to unprecedented device stability of more than 120 d under severe conditions. In addition, the polymeric acid‐applied carbon nanotube‐based silicon solar cells show excellent chemical and mechanical robustness. The obtained stable efficiency stands the highest among the reported carbon nanotube‐based silicon solar cells.  相似文献   

10.
This is a report of microbial formation of multiwall carbon nanotubes (MWCNT) and nanofibers at normal pressure and temperature. Our results demonstrate a single cell organism's ability to form complicated material of high industrial interest. The microorganism, Gallionella, is classified as autotrophic and dysoxic. It uses CO2 for its carbon source and grows in environments with low concentrations of free oxygen. The organisms were taken from a deep bedrock tunnel where water leaking from cracks in the rock formed a precipitate of iron as a bacterial slime on the rock wall. Detailed investigations of the samples by transmission electron microscopy (TEM) revealed several types of MWCNT. The stalk single MWCNT was observed with a diameter of about 10 nm and with an inner diameter of 1.35 nm. The wall of the nanotube is built by graphite layers. The 10 to 20 sheets are used to form the tubes. The measured spacing between the lines is 0.34 nm, which is an average value of interlayer spacing, close to the graphitic distance (0.335 nm). HRTEM images reveal a two-dimensional lattice with a spacing of 0.24 nm, indicating the presence of graphene.  相似文献   

11.
In this work, a facile one-pot reaction for the formation of metal nanoparticles in a water solution through the use of n-(2-aminoethyl)-3-aminosilanetriol is presented. This compound can be used to effectively reduce and complex metal salts into metal core nanoparticles coated with the compound. By controlling the concentrations of salt and silane one is able to control reaction rates, particle size, and nanoparticle coating. The effects of these changes were characterized through transmission electron microscopy (TEM), UV-Vis spectrometry (UV-Vis), Nuclear Magnetic Resonance spectroscopy (NMR) and Fourier Transform Infrared spectroscopy (FTIR). A unique aspect to this reaction is that usually silanes hydrolyze and cross-link in water; however, in this system the silane is water-soluble and stable. It is known that silicon and amino moieties can form complexes with metal salts. The silicon is known to extend its coordination sphere to form penta- or hexa-coordinated species. Furthermore, the silanol group can undergo hydrolysis to form a Si-O-Si silica network, thereby transforming the metal nanoparticles into a functionalized nanocomposites.  相似文献   

12.
Increasing attention has been focused on the use of nanostructures as contrast enhancement agents in medical imaging, especially in computed tomography (CT). To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agents for CT imaging. This study was designed to evaluate any effect on X-ray attenuation that might result from employing GNPs with a variety of shapes, sizes, surface chemistries, and concentrations. Gold nanorods (GNRs) and spherical GNPs were synthesized for this application. X-ray attenuation was quantified by Hounsfield unit (HU) in CT. Our findings indicated that smaller spherical GNPs (13 nm) had higher X-ray attenuation than larger ones (60 nm) and GNRs with larger aspect ratio exhibited great effect on X-ray attenuation. Moreover, poly ethylene glycol (PEG) coating on GNRs declined X-ray attenuation as a result of limiting the aggregation of GNRs. We observed X-ray attenuation increased when mass concentration of GNPs was elevated. Overall, smaller spherical GNPs can be suggested as a better alternative to Omnipaque, a good contrast agent for CT imaging. This data can be also considered for the application of gold nanostructures in radiation dose enhancement where nanoparticles with high X-ray attenuation are applied.  相似文献   

13.
Tumor angiogenesis is a complicated process based upon a sequence of interactions between tumor and vessel endothelial cells. Tumor conditioned medium has been widely used to stimulate endothelial cells in vitro angiogenesis. This work was aimed to investigate the effects of gold nanoparticles (GNPs) on angiogenesis in hepatic carcinoma-conditioned endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured with conditioned medium (CM) from the human hepatocarcinoma cell line HepG2 (HepG2-CM), and then treated with different concentrations of GNPs. The effects of GNPs on the viability, migration and active VEGF level of HUVECs were investigated by MTT assay, wound healing assay and transwell chamber assay, and ELISA assay, respectively. The data showed that GNPs significantly inhibited HUVECs proliferation and migration induced by HepG2-CM, and also reduced the levels of active VEGF in the co-culture system. Then, the alterations in morphology and ultrastructure of HUVECs detected by atomic force microscopy (AFM) showed that there appeared obvious pseudopodia, larger membrane particle sizes and much rougher surface in HUVECs after HepG2-CM treatment, which were all reversed after GNPs treatment. Changes in cytoskeleton of HUVECs determined by immunocytochemistry demonstrated that GNPs treatment remarkably inhibited the activation effect of HepG2-CM on HUVECs, which was associated with the disruption of actin filaments induced by GNPs. This study indicates that GNPs can significantly inhibit HepG2-CM activated endothelial cell proliferation and migration through down-regulation of VEGF activity and disruption of cell morphology, revealing the potential applications of GNPs as antiangiogenic agent for the treatment of hepatic carcinoma.  相似文献   

14.
Within the family of nanomaterials, carbon nanotubes (CNTs) have emerged as a new efficient scaffold for studying molecular interactions at interfaces. Poor dispersability of CNTs in any solvent presents a considerable drawback for the development of novel functional composite structures. Previous studies have demonstrated that the solubility of CNTs can be greatly enhanced by employing appropriate surfactants, some of them being biological molecules. In this work, we study the noncovalent wrapping of lipid chains onto the graphitic surface of single-walled material (SWCNTs) by electron microscopy and Raman spectroscopy. Stable and homogenous aqueous suspensions of SWCNTs in the presence of lipids have been prepared, whereas their electrophoretic mobility was confirmed by zeta-potential measurements. Raman measurements revealed that smaller diameter SWCNTs are preferentially dispersed by lipid molecules in the aqueous supernatant part of the prepared suspension.  相似文献   

15.
In this article, a conspicuously simple and highly sensitive amperometric immunosensor based on the sequential electrodeposition of Prussian blue (PB) and gold nanoparticles (GNPs) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) surface is proposed for the detection of α-fetoprotein (AFP). By comparison with PB, the MWCNT/PB composite film had been proven to show much better electrochemical stability and a larger response current. The electrodeposited GNP film can be used not only to immobilize biomolecules but also to avoid the leakage of PB and to prevent shedding of MWCNT/PB composite film from the electrode surface. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal experimental conditions, the proposed immunosensor for AFP was observed with an ultralow limit of detection (LOD) equal to 3 pg/ml (at 3δ), and the linear working range spanned the concentrations of AFP from 0.01 to 300 ng/ml. Moreover, the immunosensor, as well as a commercially available kit, was examined for use in the determination of AFP in real human serum specimens. More significant, the assay mentioned here is simpler than the traditional enzyme-linked immunosorbent assay (ELISA), and an excellent correlation of levels of AFP measured was obtained, indicating that the developed immunoassay could be a promising alternative approach for detection of AFP and other tumor markers in the clinical diagnosis.  相似文献   

16.
The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double‐layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass‐derived N, P‐codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom‐enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom‐enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as‐prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as‐prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long‐term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g?1).  相似文献   

17.
Inhomogeneous mass and charge transfers induce severe Li dendrite formation, impeding the service of Li metal anodes in rechargeable batteries. Various 3D hosts are proposed to address the related issues. To enable better progress, hybrid micro/nanostructures with the ability to realize spatial control of Li deposition over nucleation should be developed. Here, it is demonstrated that edge‐rich graphene (ERG), which is vertically grown on a 3D carbon nanofiber (CNF) substrate via a simple chemical vapor deposition method, can serve as nanoseeds to reduce the nucleation overpotential of Li effectively and guide the Li deposition on the 3D CNF substrate uniformly, free from dendrites. Different from the case in other sp2 carbon featuring interconnected graphitic structures such as planar graphene, the zero nucleation overpotential presented by ERG is attributed to its unique electron properties (i.e., the enhanced surface electronegativity) and its open architecture. Compared to the pristine CNF host, the ERG‐hybridized one resolves the problems of the Li metal anode better, endowing a practical Li battery with a long lifespan of 1000 cycles with a Coulombic efficiency of 99.7%. The results present novel sights for developing next‐generation Li‐carbon anodes with high cycling stability.  相似文献   

18.
Soils retain large quantities of carbon, thereby slowing its return to the atmosphere. The mechanisms governing organic carbon sequestration in soil remain poorly understood, yet are integral to understanding soil‐climate feedbacks. We evaluated the biochemistry of dissolved and solid organic carbon in potential source and sink horizons across a chronosequence of volcanic soils in Hawai'i. The soils are derived from similar basaltic parent material on gently sloping volcanic shield surfaces, support the same vegetation assemblage, and yet exhibit strong shifts in soil mineralogy and soil carbon content as a function of volcanic substrate age. Solid‐state13carbon nuclear magnetic resonance spectra indicate that the most persistent mineral‐bound carbon is comprised of partially oxidized aromatic compounds with strong chemical resemblance to dissolved organic matter derived from plant litter. A molecular mixing model indicates that protein, lipid, carbohydrate, and char content decreased whereas oxidized lignin and carboxyl/carbonyl content increased with increasing short‐range order mineral content. When solutions rich in dissolved organic matter were passed through Bw‐horizon mineral cores, aromatic compounds were preferentially sorbed with the greatest retention occurring in horizons containing the greatest amount of short‐range ordered minerals. These minerals are reactive metastable nanocrystals that are most common in volcanic soils, but exist in smaller amounts in nearly all major soil classes. Our results indicate that long‐term carbon storage in short‐range ordered minerals occurs via chemical retention with dissolved aromatic acids derived from plant litter and carried along preferential flow‐paths to deeper B horizons.  相似文献   

19.
Hydrogenase (H2 ase) purified from phototropic bacteriumThiocapsa roseopersicina was coassembled with carbon nanotubes (CNTs) on glass carbon electrodes. Both oxidized CNTs and Nafion-CNT composites were used to modify the electrodes. The pure H2 are formed dot-like domains, while the oxidized CNT-H2 ase and Nafion-CNT-H2 ase composites formed wire-like and large closely packed aggregates, respectively. The reductive potentials for the [4Fe-4S]2+/1+ clusters of H2ase were at about −500, −650, and −700 mV (vs Ag/AgCl) for the electrodes modified with pure H2ase, Nafion-SWNT-H2ase, and Nafion-MWNT-H2ase composites, respectively. Potential step chronocoulometry measurements indicated a larger charge-transfer diffusion coefficient between the H2ase and electrodes when the CNTs were co-assembled with H2ase, suggesting that the CNTs can not only act as a supporting layer to immobilize enzymes, but also act as a highly conductive wire throughout the films.  相似文献   

20.
Li Y  Wang P  Wang L  Lin X 《Biosensors & bioelectronics》2007,22(12):3120-3125
In this paper, the films of overoxidized polypyrrole (PPyox) directed single-walled carbon nanotubes (SWNTs) have been electrochemically coated onto glassy carbon electrode (GCE). Electroactive monomer pyrrole was added into the solution containing sodium dodecyl sulfate (SDS) and SWNTs. Then, electropolymerization was proceeded at the surface of GCE, and a novel kind of conducting polymer/carbon nanotubes (CNTs) composite film with the orientation of CNTs were obtained correspondingly. Finally, this obtained polypyrrole (PPy)/SWNTs film modified GCE was oxidized at a potential of +1.8 V. It can be found that this proposed PPyox/SWNTs composite film modified GCE exhibited excellent electrocatalytic properties for some species such as nitrite, ascorbic acid (AA), dopamine (DA) and uric acid (UA), and could be used as a new sensor for practical applications. Compared with previous CNTs modified electrodes, SWNTs were oriented towards the outside of modified layer by PPyox and SDS, which made the film easily conductive. Moreover, this proposed film modified electrode was more stable, selective and applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号