首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.  相似文献   

2.
The study investigates two functional genes for toluene degradation across three redox conditions (nitrate and sulfate amended and methanogenic). The genes targeted include benzylsuccinate synthase α-subunit (bssA) and a gene recently identified as being a strong indicator of anaerobic aromatic degradation, called 6-oxocylcohex-1-ene-1-carbonyl-CoA hydrolase (bamA). In all, sixteen different anaerobic toluene degrading microcosms were investigated using several primers sets targeting bssA and one primer set targeting bamA. One bssA primer set (7772f/8546r) was the most successful in producing a strong amplicon (eight from sixteen) with the other bssA primers sets producing strong amplicons in six or less samples. In contrast, the bamA primer set (bam-sp9 and bam-asp1) produced a strong amplicon in DNA extracted from all except one microcosm. Partial bssA and bamA sequences were obtained for a number of samples and compared to those available in GenBank. The partial bssA sequences (from nitrate amended and methanogenic microcosms) were most similar to Thauera sp. DNT-1, Thauera aromatica, Aromatoleum aromaticum EbN1 and bssA clones from a study involving sulfate reducing toluene degradation. The bamA sequences obtained could be placed into five previously defined clades (bamA-clade 1, Georgfuchsia/Azoarcus, Magnetospirillum/Thauera Syntrophus and Geobacter clades), with the placement generally depending on redox conditions. Gene numbers were also correlated with toluene degradation and the final gene number for both genes differed considerably between the range of redox conditions. The work is the first in depth investigation of bamA diversity over a range of redox conditions and inoculum sources.  相似文献   

3.
Methanogenic microbial community is responsive to the availability of hydrocarbons and such information is critical for the assessment of hydrocarbon degradation in remediation and also in biologically enhanced recovery of energy from non-producing oil reserves. In this study, methanogenic enrichment cultures from oily sludge amended with n-alkanes (C15-C20) showed a development of active methanogenic alkanes-degrading consortium for over a total of 1000 days of incubation at 37°C. Total genomic DNAs were extracted from three types of samples, the original oily sludge (OS), the sludge after incubation for 500 days under methanogenic condition without any external carbon addition (EC), and the enrichment culture from the EC amended with n-alkanes (ET) incubated for another 500 days. The phylogenetic diversities of microbial communities of the three samples were analyzed by PCR amplification of partial 16S rRNA genes. The catabolic genes encoding benzylsuccinate synthase (bssA) and alkylsuccinate synthase (assA) were also examined by PCR amplification. These results provide important evidence in that microbial populations in an oily sludge shifted from methanogenic aromatic compounds degrading communities to potential methanogenic alkane-degrading communities when the enrichment was supplemented with n-alkanes and incubated under anaerobic conditions.  相似文献   

4.
Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered new microbial process performed by the Candidatus Methylomirabilis oxyfera with an unusual intra-aerobic pathway, but there is no report about n-damo bacteria in marine environments. M. oxyfera-like sequences were successfully retrieved for the first time from both surface and subsurface ocean sediments of the South China Sea (SCS) using both 16S rRNA and pmoA genes as biomarkers and PCR amplification in this study. The majority of M. oxyfera-like 16S rRNA gene-based PCR amplified sequences from the SCS sediments formed a new group distinctively different from those detected in freshwater habitats and the information is consistent phylogenetically with those obtained from the pmoA gene. This study showed the existence of n-damo in ocean sediments and suggests that marine sediments harbor n-damo phylotypes different from those in the freshwater. This finding here expands our understanding on the distribution of n-damo bacteria to marine ecosystem and implies their potential contribution to the marine C and N cycling.  相似文献   

5.
6.
Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.  相似文献   

7.
Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.  相似文献   

8.
Nitrite-dependent anaerobic methane oxidation (n-damo) process was reported to be mediated by “Candidatus Methylomirabilis oxyfera”, which belongs to the candidate phylum NC10. M. oxyfera-like bacteria have been detected in lake ecosystems, while their distribution, diversity and abundance in river ecosystems have not been well studied. In this study, both the 16S rRNA and the pmoA molecular biomarkers confirmed the presence of diverse NC10 phylum bacteria related to M. oxyfera in a river ecosystem—the Qiantang River, Zhejiang Province (China). Phylogenetic analysis of 16S rRNA genes demonstrated that the recovered M. oxyfera-like sequences could be grouped into several distinct clusters that exhibited 89.8 % to 98.9 % identity to the M. oxyfera 16S rRNA gene. Similarly, several different clusters of pmoA gene sequences were observed, and these clusters displayed 85.1–95.4 % sequence identity to the pmoA gene of M. oxyfera. Quantitative PCR showed that the abundance of M. oxyfera-like bacteria varied from 1.32?±?0.16?×?106 to 1.03?±?0.12?×?107 copies g (dry weight)?1. Correlation analysis demonstrated that the total inorganic nitrogen content, the ammonium content and the organic content of the sediment were important factors affecting the distribution of M. oxyfera-like bacterial groups in the examined sediments. This study demonstrated the distribution of diverse M. oxyfera-like bacteria and their correlation with environmental factors in Qiantang River sediments.  相似文献   

9.
Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4 +) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.  相似文献   

10.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ~700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

11.
Natural attenuation of the mono‐aromates benzene, toluene, ethylbenzene and xylene occurs under iron‐reducing conditions in a leachate‐contaminated aquifer near the Banisveld landfill, the Netherlands. The diversity of mono‐aromate‐degrading microorganisms was studied by targeting functional genes encoding benzylsuccinate synthase α‐subunit (bssA) and 6‐oxocyclohex‐1‐ene‐1‐carbonyl‐CoA hydrolase (bamA). Sixty‐four bssA and 188 bamA variants were sequenced from groundwater sampled along the pollution plume in 1999 and 2004. Species containing bssA sequences closest affiliated (> 91%) with the betaprotebacterium Georgfuchsia toluolica were the dominant alkylbenzene degraders (89% of bssA sequences). bssA genes were found at more than 10‐fold lower copy numbers than bamA genes, of which only a small fraction (< 2%) was closely related to the genes of Georgfuchsia. bamA gene diversity was high and bamA‐based community composition was primarily affected by dissolved organic carbon (DOC) and ferrous iron concentrations. bamA sequences closest related to Geobacteraceae were dominantly (43.2%) observed and the presence of Geobacteraceae‐related bamA sequences was associated with DOC. Our results indicate a key role for specialized Georgfuchsia spp. in the degradation of alkylbenzenes, whereas Geobacteraceae are involved in degradation of aromatics other than toluene and xylene.  相似文献   

12.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

13.
Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate—an important electron acceptor—meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota.  相似文献   

14.
The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.  相似文献   

15.
Changjiang Estuary, the largest estuary in China, encompasses a wide range of nutrient loading and trophic levels from the rivers to the sea, providing an ideal natural environment to explore relationships between functional diversity, physical/chemical complexity, and ecosystem function. In this study, molecular biological techniques were used to analyze the community structure and diversity of ammonia-oxidizing bacteria (AOB) in the sediments of Changjiang Estuary and its adjacent waters in East China Sea. The amoA gene (encoding ammonia monooxygenase subunit A) libraries analysis revealed extensive diversity within the β-Proteobacteria group of AOB, which were grouped into Nitrosospira-like and Nitrosomonas-like lineages. The majority of amoA gene sequences fell within Nitrosospira-like clade, and only a few sequences were clustered with the Nitrosomonas-like clade, indicating that Nitrosospira-like lineage may be more adaptable than Nitrosomonas-like lineage in this area. Multivariate statistical analysis indicated that the spatial distribution of the sedimentary β-Proteobacterial amoA genotype assemblages correlated significantly with nitrate, nitrite, and salinity. The vertical profile of amoA gene copies in gravity cores showed that intense sediment resuspension led to a deeper mixing layer. The horizontal distribution pattern of amoA gene copies was nearly correlated with the clayey mud belt in Changjiang Estuary and its adjacent area in East China Sea, where higher β-Proteobacteria phylogenetic diversity was observed. Meanwhile, those areas with high amoA copies in the surface sediments nearly matched those with low concentrations of dissolved oxygen and ammonium in the bottom water.  相似文献   

16.
To assess links between betaproteobacterial ammonia-oxidizing bacteria (AOB) in marine sediment and in overlying water, communities in Loch Duich, Scotland, were characterized by analysis of clone libraries and denaturant gradient gel electrophoresis of 16S rRNA gene fragments. Nitrosospira cluster 1-like sequences were isolated from both environments, but different sequence types dominated water and sediment samples. Detailed phylogenetic analysis of marine Nitrosospira cluster 1-like sequences in Loch Duich and surrounding regions suggests the existence of at least two different phylogenetic subgroups, potentially indicative of new lineages within the betaproteobacterial AOB, representing different marine ecotypes.  相似文献   

17.
Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.  相似文献   

18.
Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with 13C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood–Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills.  相似文献   

19.
Diversity of the nitrous oxide reductase (nosZ) gene was examined in sediments obtained from the Atlantic Ocean and Pacific Ocean continental shelves. Approximately 1,100 bp of the nosZ gene were amplified via PCR, using nosZ gene-specific primers. Thirty-seven unique copies of the nosZ gene from these marine environments were characterized, increasing the nosZ sequence database fourfold. The average DNA similarity for comparisons between all 49 variants of the nosZ gene was 64% ± 10%. Alignment of the derived amino acid sequences confirmed the conservation of important structural motifs. A highly conserved region is proposed as the copper binding, catalytic site (CuZ) of the mature protein. Phylogenetic analysis demonstrated three major clusters of nosZ genes, with little overlap between environmental and culture-based groups. Finally, the two non-culture-based gene clusters generally corresponded to sampling location, implying that denitrifier communities may be restricted geographically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号