共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael J. Bannon Candace L. Savonen Zachary J. Hartley Magen M. Johnson Carl J. Schmidt 《PloS one》2015,10(2)
The development of new therapeutic strategies for the treatment of complex brain disorders such as drug addiction is likely to be advanced by a more complete understanding of the underlying molecular pathophysiology. Although the study of postmortem human brain represents a unique resource in this regard, it can be challenging to disentangle the relative contribution of chronic pathological processes versus perimortem events to the observed changes in gene expression. To begin to unravel this issue, we analyzed by quantitative PCR the midbrain expression of numerous candidate genes previously associated with cocaine abuse. Data obtained from chronic cocaine abusers (and matched control subjects) dying of gunshot wounds were compared with a prior study of subjects with deaths directly attributable to cocaine abuse. Most of the genes studied (i.e., tyrosine hydroxylase, dopamine transporter, forkhead box A2, histone variant H3 family 3B, nuclear factor kappa B inhibitor alpha, growth arrest and DNA damage-inducible beta) were found to be differentially expressed in chronic cocaine abusers irrespective of immediate cause of death or perimortem levels of cocaine, suggesting that these may represent core pathophysiological changes arising with chronic drug abuse. On the other hand, chemokine C-C motif ligand 2 and jun proto-oncogene expression were unaffected in cocaine-abusing subjects dying of gunshot wounds, in contrast to the differential expression previously reported in cocaine-related fatalities. The possible influence of cause of death and other factors on the cocaine-responsiveness of these genes is discussed. 相似文献
2.
Mauro Federici Emanuele Claudio Latagliata Ada Ledonne Francesca R. Rizzo Marco Feligioni Dave Sulzer Matthew Dunn Dalibor Sames Howard Gu Robert Nisticò Stefano Puglisi-Allegra Nicola B. Mercuri 《The Journal of biological chemistry》2014,289(1):264-274
We combined in vitro amperometric, optical analysis of fluorescent false neurotransmitters and microdialysis techniques to unveil that cocaine and methylphenidate induced a marked depression of the synaptic release of dopamine (DA) in mouse striatum. In contrast to the classical dopamine transporter (DAT)-dependent enhancement of the dopaminergic signal observed at concentrations of cocaine lower than 3 μm, the inhibitory effect of cocaine was found at concentrations higher than 3 μm. The paradoxical inhibitory effect of cocaine and methylphenidate was associated with a decrease in synapsin phosphorylation. Interestingly, a cocaine-induced depression of DA release was only present in cocaine-insensitive animals (DAT-CI). Similar effects of cocaine were produced by methylphenidate in both wild-type and DAT-CI mice. On the other hand, nomifensine only enhanced the dopaminergic signal either in wild-type or in DAT-CI mice. Overall, these results indicate that cocaine and methylphenidate can increase or decrease DA neurotransmission by blocking reuptake and reducing the exocytotic release, respectively. The biphasic reshaping of DA neurotransmission could contribute to different behavioral effects of psychostimulants, including the calming ones, in attention deficit hyperactivity disorder. 相似文献
3.
Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. 相似文献
4.
5.
6.
Rosa C. Baos Aitziber Vivero Sonia Aznar Jesús García Miquel Pons Cristina Madrid Antonio Jurez 《PLoS genetics》2009,5(6)
Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization. 相似文献
7.
8.
9.
Abstract: A subtractive hybridization and differential screening procedure was used to detect up-regulation of cytochrome c oxidase (CO) subunits I, III, and IV mRNA in the nucleus accumbens (NAc) of rats chronically treated with cocaine. Northern blot analyses of mRNA isolated from individual rats confirmed that CO subunit I was up-regulated by chronic, but not acute, cocaine in two brain regions, the NAc (33%) and caudate-putamen (CP)(35%). CO activity, used as a measure of metabolic activity, was increased by 88% in the NAc, and decreased by 20% in the medial prefrontal cortex (mPFC), the day after chronic treatment was terminated. CO enzyme activity was not regulated in the CP, or in other brain regions not involved in drug reward. CO activity in both the NAc and mPFC showed unique time-dependent patterns of regulation during the week after chronic cocaine treatment. 相似文献
10.
11.
12.
Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance. 相似文献
13.
14.
Nora D. Volkow Gene-Jack Wang Dardo Tomasi Frank Telang Joanna S. Fowler Kith Pradhan Millard Jayne Jean Logan Rita Z. Goldstein Nelly Alia-Klein Christopher Wong 《PloS one》2010,5(7)
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate''s attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate''s blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction. 相似文献
15.
16.
The effects of long-term alcohol consumption on the mitogen-activated protein kinases (MAPKs) pathway and N-methyl-D-aspartate-type glutamate receptor 1 (GluN1) subunits in the mesocorticolimbic system remain unclear. In the present study, rats were allowed to consume 6% (v/v) alcohol solution for 28 consecutive days. Locomotor activity and behavioral signs of withdrawal were observed. Phosphorylation and expression of extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38 protein kinase and GluN1 in the nucleus accumbens, caudate putamen, amygdala, hippocampus and prefrontal cortex of these rats were also measured. Phosphorylation of ERK, but not JNK or p38, was decreased in all five brain regions studied in alcohol-drinking rats. The ratio of phospho/total-GluN1 subunit was reduced in all five brain regions studied. Those results suggest that the long-term alcohol consumption can inhibits GluN1 and ERK phosphorylation, but not JNK or p38 in the mesocorticolimbic system, and these changes may be relevant to alcohol dependence. To differentiate alcohol-induced changes in ERK and GluN1 between acute and chronic alcohol exposure, we have determined levels of phospho-ERK, phospho-GluN1 and total levels of GluN1 after acute alcohol exposure. Our data show that 30 min following a 2.5 g/kg dose of alcohol (administered intragastrically), levels of phospho-ERK are decreased while those of phospho-GluN1 are elevated with no change in total GluN1 levels. At 24 h following the single alcohol dose, levels of phospho-ERK are elevated in several brain regions while there are no differences between controls and alcohol treated animals in phospho-GluN1 or total GluN1. Those results suggest that alcohol may differentially regulate GluN1 function and ERK activation depending on alcohol dose and exposure time in the central nervous system. 相似文献
17.
18.
Marianna Mikus Lóránt Hatvani Torsten Neuhof Monika Komoń-Zelazowska Ralf Dieckmann Torsten Schwecke Irina S. Druzhinina Hans von D?hren Christian P. Kubicek 《Applied and environmental microbiology》2009,75(10):3222-3229
Hydrophobins are small extracellular proteins, unique to and ubiquitous in filamentous fungi, which mediate interactions between the fungus and environment. The mycoparasitic fungus Hypocrea atroviridis has recently been shown to possess 10 different class II hydrophobin genes, which is a much higher number than that of any other ascomycete investigated so far. In order to learn the potential advantage of this hydrophobin multiplicity for the fungus, we have investigated their expression patterns under different physiological conditions (e.g., vegetative growth), various conditions inducing sporulation (light, carbon starvation, and mechanical injury-induced stress), and confrontation with potential hosts for mycoparasitism. The results show that the 10 hydrophobins display different patterns of response to these conditions: one hydrophobin (encoded by hfb-2b) is constitutively induced under all conditions, whereas other hydrophobins were formed only under conditions of carbon starvation (encoded by hfb-1c and hfb-6c) or light plus carbon starvation (encoded by hfb-2c, hfb-6a, and hfb-6b). The hydrophobins encoded by hfb-1b and hfb-5a were primarily formed during vegetative growth and under mechanical injury-provoked stress. hfb-22a was not expressed under any conditions and is likely a pseudogene. None of the 10 genes showed a specific expression pattern during mycoparasitic interaction. Most, but not all, of the expression patterns under the three different conditions of sporulation were dependent on one or both of the two blue-light regulator proteins BLR1 and BLR2, as shown by the use of respective loss-of-function mutants. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of mycelial solvent extracts provided sets of molecular ions corresponding to HFB-1b, HFB-2a, HFB-2b, and HFB-5a in their oxidized and processed forms. These in silico-deduced sequences of the hydrophobins indicate cleavages at known signal peptide sites as well as additional N- and C-terminal processing. Mass peaks observed during confrontation with plant-pathogenic fungi indicate further proteolytic attack on the hydrophobins. Our study illustrates both divergent and redundant functions of the 10 hydrophobins of H. atroviridis.Hydrophobins are unique and ubiquitous small proteins, characterized by the presence of eight positionally conserved cysteine residues, and present in all multicellular asco- and basidiomycetes. According to their hydropathy profiles and spacing between the conserved cysteines (37), they are divided into two classes (class I and class II). Hydrophobins are secreted proteins, found on the outer surfaces of the cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment (18, 24, 37), such as surface recognition during pathogenic interaction with plants, insects, or other fungi, but also in symbiosis (38). In addition, they also influence cell wall composition (33). Because of these manifold roles, it is less surprising that the expression of hydrophobin genes is subject to complex patterns of signals, including those that are related to the triggering of conidiogenesis or indicating the presence of a plant host.Many species of the fungal genus Hypocrea/Trichoderma are known as mycoparasites, and several of them are therefore applied as biocontrol agents (6, 7, 36). In addition, Trichoderma spp. have recently been reported to occur as endophytes and to be able to elicit positive plant responses against potential pathogens (17). Because of the reasons given above, hydrophobins would be candidate proteins playing a role in this process, and in fact a class I hydrophobin gene has recently been reported to be overproduced during endophytic interaction of Trichoderma asperellum and cucumber roots (35). In addition, other hydrophobins may be involved in the mechanism of mycoparasitism itself as well as the colonization of decaying wood.Our information about the roles of hydrophobins in the physiology of Trichoderma as well as other ascomycetous fungi is mostly derived from reversed genetics of a few major members (3, 4, 19-22). In Hypocrea jecorina (= Trichoderma reesei), two major class II hydrophobins (HFB-1 and HFB-2) have been studied in detail (4) and shown to be formed under different physiological conditions (29). However, the genome sequence of H. jecorina contains six class II hfb genes (27), and the roles of HFB-3, HFB-4, HFB-5, and HFB-6 are yet unknown. In the biocontrol fungus Hypocrea atroviridis (formerly called “Trichoderma harzianum”), only a single hydrophobin gene has been characterized so far (srh1 [28]) and shown to be expressed mainly under conditions of sporulation. Consequently, very little is known about hydrophobins and their regulation in Trichoderma.We have recently reported that two species of the Trichoderma/Hypocrea genus, Hypocrea virens and Hypocrea atroviridis, have an exceptional high number of class II hydrophobin genes (i.e., 11 and 10 phylogenetically different genes, respectively [22]). Therefore, the objective of this work was to investigate whether all of them are in fact expressed and, if so, under which conditions. We thereby put emphasis on vegetative growth, mycoparasitic interaction, and different triggers of sporulation and on learning whether the sporulation- and stress-regulating proteins BLR1 and BLR2 (10, 15) play a role in this process.In addition, we used matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry to detect the respective proteins and to learn their mode of processing. It has previously been shown that direct solvent extraction of mycelia and spores of Ascomycetes in the process of sample preparation provides a small set of protein peaks in the range of 5,000 to 10,000 Da representing the hydrophobin inventory (27). Structural studies of hydrophobins from H. jecorina (2, 20, 30, 31), Schizophyllum commune (13), and Agaricus bisporus (26) have shown expected signal peptide cleavage but also unusual processing patterns, including cleavage after Arg and Pro, as well as C-terminal modification. 相似文献
19.
Circadian clock genes are remarkably conserved between eucoelomates. Although Drosophila has one copy of each major component, vertebrates have two or (in the case of the Period genes) three paralogs (Per1-3). We investigated the possibility that the vertebrate Per genes arose through two genome duplications during the emergence of vertebrates. Phylogenetic trees have placed zebrafish
and mammalian Per1 and 2 together in a separate branch from Per3. The positions of four coding region splice sites were conserved between Drosophila per and the human paralogs, the fifth one being unique to Drosophila. The human PER genes shared the positions of all coding region splice sites, except the first two in PER1 and PER2 (which PER3 lacks). The phases of all splice sites were conserved between all four genes with two exceptions. Analysis of all genes within
10 Mb of the human PER1-3 genes, which are located 7.8—8.8 Mb from the telomeres on chromosomes 17, 2, and 1, identified several orthologous neighbors
shared by at least two PER genes. Two gene families, HES (hairy and Enhancer of Split) and KIF1 (kinesin-like protein 1), were represented in all three of these paralogons. Although no functional fourth human PER paralog exists, five representatives from the same gene families were found close to the telomer of chromosome 3. We conclude
that the ancestral chordate Per gene underwent two duplication events, giving rise to Per1—3 and a lost fourth paralog.
[Reviewing Editor: Dr. John Onkeshott] 相似文献
20.
pH-Induced Alterations in Dopamine Synthesis Regulation in Rat Brain Striatal Synaptosomes 总被引:3,自引:3,他引:0
Abstract: Dopamine synthesis regulation as a function of pH has been examined in rat brain striatal synaptosomes. Synthesis stimulation produced by lowering the incubation pH from 7.2 to 6.2 is accompanied by a significant increase in apparent A'm for tyrosine and in apparent Vmax. While these kinetic alterations are similar to those produced by the depolarizing agent veratridine, it does not appear that synthesis is stimulated at pH 6.2 via synaptosomal depolarization since (1) synthesis stimulation still occurs at pH 6.2 in a calcium-free medium in contrast to the calcium-dependency of veratridine- induced stimulation and (2) tyrosine uptake is not inhibited by incubation at pH 6.2, but is markedly inhibited by veratridine. In order to study how the regulatory properties of synaptosomal preparations vary according to pH, the ability of synaptosomal dopamine synthesis to respond to various agents was tested between pH 7.2 and 6.2. The stimulatory effects of veratridine, amphetamine, phenylethylamine and dibutyryl cyclic AMP at pH 7.2 were significantly diminished at pH 6.2. In addition, incubation at pH 6.2 antagonized the veratridine-induced inhibition of tyrosine uptake, suggesting an interference with the depolarization process. The inhibitory effects of dopamine and tyramine at pH 7.2 were also antagonized at pH 6.2. In contrast to the effects of pH 6.2 buffer, incubation at pH 6.6 does not markedly alter responses to the various drugs. The results suggest that, although basal dopamine synthesis rates can be increased by lowering the pH, synaptosomal regulatory properties are significantly altered as the pH is lowered below 6.6. 相似文献