首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation History and Archaeobotany - The results of high-resolution records of pollen, plant macroremains and charred plant particles, diatoms, Cladocera and geochemistry from a 14C-dated core,...  相似文献   

2.
The Holocene lake history, vegetation history and climate history of Brurskardstjørni, an alpine lake in the Jotunheimen Mountains of south-central Norway, are reconstructed. The reconstructions are based on fossil pollen, plant macrofossils, diatoms, chironomids and sediment characteristics. Subsequent to deglaciation, the lake was formed at about 11,000 cal years BP. A diverse chironomid assemblage quickly colonised the lake, whereas the first diatoms were found about 400 years later. At that time, the lake water was turbid with a high pH. The surrounding soils were immature and unstable and dominated by open pioneer vegetation. Compared to the present, summer temperatures were warmer and there was less winter precipitation. From about 10,000 cal years BP, local organic production increased rapidly and from about 9,500 cal years BP a few macrofossils and a high pollen influx of birch suggest that the tree-line was close to the lake. Pine most likely reached its highest tree-line altitude around 9,000 cal years BP and has receded since that time. From about 5,000 cal years BP, the total amount of trees and shrubs decreased and the landscape became more open, probably due to decreasing temperatures and increasing effective moisture lowering the birch tree-line. Coinciding with a cooling during the last 3,000 years, lake-water pH decreased. There is large incongruence between the Holocene July temperatures inferred from pollen and chironomids. The biological proxies responded to a combined effect of environmental change and biotic interactions. This response is interpreted with reference to taxon–environment relationships in the modern calibration data sets and with reference to the latent structure and ecological demands of the fossil assemblages.  相似文献   

3.
A pollen and charcoal record from Gargano (southern Italy) provides new information on the vegetation history and environmental change in southern Italy during the middle to late Holocene. The chronological framework is provided by six AMS radiocarbon dates carried out on plant macroremains. Pollen diagrams record a Mediterranean vegetation along the coastland and a stable mixed oak forest at higher elevations between ca. 5900 and 4200 cal b.p. A sharp and dramatic fall of tree pollen concentrations and a change in fire frequencies occurred from approximately 4200 cal b.p. suggesting a climate change towards drier conditions. This event is coherent with regional and extra-regional palaeoclimatic records that suggest that a mid-Holocene dry period was experienced in southern Italy, southern Spain, and perhaps further afield. Human impact on vegetation seems to have occurred since about 2700 cal b.p.  相似文献   

4.
Bégin  Yves  Marguerie  Dominique 《Plant Ecology》2002,159(2):143-152
The production of plant macroremains was studied in a conifer forest twomonths after it burned in 1996 in northern Québec. The proportions ofvarious types of charred and uncharred pieces (needles, cones andwood) produced by black spruce (Piceamariana) and jack pine (Pinusbanksiana) were determined by sampling around individual trees.Both species produced equivalent masses of charred material, but pieces of woodcharcoal from jack pine are generally larger that those of black spruce. Theproportion of charred versus uncharred needles is the bestindicator of the species dominance in the forest. Although the fall of uncharredneedles is delayed from the time of a fire, they contribute to more than half ofall remains produced. Jack pine cones remain on the tree for a long time after afire, while charred cones of black spruce are dehiscent (cones come off thebranches easily). Trees are poor wood charcoal producers compared toundergrowth shrubs. As a result, the macroremains assemblage associated with afire event is made up of large amount of uncharred material from trees and alarge proportion of charred pieces produced by undergrowth vegetation. Modernassemblages of plant macroremains indicate that in order to reconstruct pastvegetation associated with fire disturbance, it is important to distinguishbetween the various types of remains, because wood charcoal is mainly producedby material that is already dead.  相似文献   

5.
Pollen and lake-level data are used to reconstruct past climate changes in the St. Lawrence lowlands, southern Québec. Past lake-level changes are assessed from sedimentological, pollen and macrofossil records from a single shallow-water core from Lac Hertel, which lies in the central part of the studied area. Three low lake-level phases are recognised: prior to 8000, 7600-6600 and 4800-3400 cal. BP. The modern analogue method is applied to pollen data from seven well-dated sites from the St. Lawrence lowlands and adjacent mountain areas, constrained and unconstrained by lake-level changes. The reconstructed climate changes are congruent with the pattern of climate changes known from eastern North America: a dry and cold late-glacial episode due to the presence of pro-glacial lakes and seas; a rapid warming between 12?500 and 11?000 cal. BP possibly caused by increasing summer insolation; a dry period from 10?000 to 6500 cal. BP; a brief cooling between 9000 and 8000 cal. BP, possibly related to a summer cooling of Arctic airmasses; a temperature maximum around 8000 cal. BP; and finally, a progressive decrease in summer temperature and an increase in (winter?) precipitation over the 4500 last years. These results show that it is possible to reveal seasonal patterns in climate by combining pollen and lake-level data.  相似文献   

6.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

7.
Species richness of Macrolepidoptera on Finnish deciduous trees and shrubs   总被引:1,自引:0,他引:1  
Summary Species richness of Macrolepidoptera on Finnish trees and shrubs was analysed by means of stepwise regression analysis. The explaining variables were plant frequency, geographical range, plant height, number of relatives and leaf size.Total frequency of the host plant, which correlated strongly with range, explained 57% of the observed variance of lepidopteran species richness on deciduous trees and shrubs. Height of plant and number of relatives explained significantly the residual variation and altogether these three variables explained 71% of the variance of species richness.Analyses at the plant genus level gave similar results and frequency, height and number of relatives explained 78% of the variance of species richness of Macrolepidoptera on deciduous plant genera.When conifers were included in the analysis leaf size also becomes a significant variable. Leaf size can, however, act as a dummy variable which effectively distinguishes conifers from deciduous trees.The validity of different models explaining herbivore species richness on plants is discussed. The results of this study favoured more than earlier studies the importance of relatedness of host plants as a factor which determines the species richness of herbivores.  相似文献   

8.
Pollen from modern tree bark samples collected in the Manendragarh Forest Range, Koriya District, Chhattisgarh, India, was investigated with the objective to understand the pollen rain in and around the study area, using modern tree bark samples as a new tool. The palyno-assemblages revealed the dominance of non-arboreals (herbs) over arboreals (trees and shrubs). Trees constitute an average of 17.23% pollen in the total pollen rain, whereas the average contribution of shrubs is only 0.33%. The non-arboreals have an average of 82.44% pollen in the total pollen rain. This bias in the form of representation of trees and shrubs, despite their ample presence in the forest, could be due to the differences in pollen production, dispersal and preservation of taxa, which depends on plant species and climatic conditions.  相似文献   

9.
Aim This study aims to separate regional and local controls on Holocene vegetation development and examine how well pollen records reflect climate change in a semi‐arid region. The relative importance of climate and human activity as agents of vegetation change in the Sahel during the late Holocene is also considered. Location Jikariya Lake, an inter‐dune depression in the Manga Grasslands of north‐eastern Nigeria. Methods Pollen and charcoal were used to provide a record of Holocene vegetation history. Palaeoclimate and hydrological changes were reconstructed from sedimentary and geochemical data. Regional and local influences were separated by comparing the evidence obtained from Jikariya Lake with previously published data from the Manga Grasslands. Results The Manga Grasslands experienced a prolonged wet period during the early and mid‐Holocene, during which swamp forest vegetation with Guinean affinities (Alchornea, Syzygium, Uapaca) occupied the inter‐dune depressions. However, variation in the pollen records between sites suggests that their establishment was dependent on conditions being locally favourable, rather than being directly coupled to regional climate. The pollen records from the Manga Grasslands are more consistent in suggesting the colonization of the dunefields by trees associated with Sudanian savanna (Combretaceae, Detarium) c. 8700 cal. yr bp . The Jikariya Lake pollen data are in accordance with the sedimentological and geochemical data from the region in indicating that the onset of arid conditions occurred progressively during the late Holocene (from c. 4700 cal. yr bp ). Abrupt changes in pollen stratigraphy, recorded at other Manga Grasslands sites 3500 cal. yr bp , appear to be the product of the local passing of ecological thresholds. The dunefield vegetation (Sahelian savanna) appears to have been resilient to (or at least palynologically silent regarding) to the climatic variability of the late Holocene. Main conclusions While climate appears to have been the primary control on vegetation development in the Manga Grasslands during the Holocene, local conditions (particularly depression size and sand influx) had a strong influence on the timing of pollen stratigraphic changes. Anthropogenic influences are difficult to detect, even during the late Holocene.  相似文献   

10.
Fossil pollen data from sediment cores may be used as a measure for past plant diversity. According to the theory of probability, palynological richness is positively related to the pollen count. In a low pollen count, only common taxa are detected, whereas rare taxa are only detected by chance. The detection of all pollen taxa requires a very high pollen count, which is time-consuming. In regular palynological investigations, the detected richness in pollen spectra varies with the pollen count. Rarefaction analysis estimates palynological richness in an exactly equal-sum count for all samples, so that comparison between samples is meaningful. However, the over-representation of some taxa suppresses the detection probability of rare taxa; low total pollen abundance in a sample enhances the detection probability of rare taxa and long-distance transported pollen grains. These factors bias the observed palynological richness and distort comparisons. Palynological richness in a pollen count proportional to its pollen influx may be one proxy for reconstructing diversity trends through time. The use of this proxy overcomes most problems encountered in rarefaction analysis, but is constrained by inaccuracy in estimating pollen influx due to the imprecise time control of sediment cores. Estimating palynological richness by mathematical methods may be another way of reconstructing pollen diversity. Pollen data tend to reflect diversity on a regional scale. Sites from small basins have the advantage of recording diversity at both local and regional scales, if the detection of each taxon is independent. By associating one site from a large basin with a series of sites from very small basins (e.g. forest-hollows), information about both regional and local diversity may be obtained. Entomophilous pollen taxa may have to be measured using a different strategy than anemophilous taxa.  相似文献   

11.
Pollen records of two swamp sections, located at Taibai Mountain, the highest peak in the Qinling Mountains of central China, show variations of vegetation and climate for the last 3 500 cal BP. The pollen assemblage at the Foyechi and Sanqingchi sections and the surface soil pollen allowed us to reconstruct a high-altitude vegetation history at Taibai Mountain for the first time. The data indicated that there was a cold-dry climate interval between 3 500 and 3 080 cal BP and a relatively warm and wet period compared with the present from 3 080 to 1 860 cal BP. The warmest period in the late Holocene on Taibai Mountain was from 1 430 to 730 cal BP, with an approximate 2℃ increase in mean annual temperature compared with today.There was a relatively cool-dry climate interval from 730 to 310 cal BP. After 310 cal BP, a mountain tundra vegetation developed again and the position of the modern tree line was established.  相似文献   

12.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

13.
千岛湖岛屿化对植物多样性的影响初探   总被引:16,自引:3,他引:13  
选取千岛湖典型破碎化区域,研究了水库形成后引起的岛屿化对植物物种多样性的影响.在18个大中小型岛屿和一处陆地对照中设立了26个样方,调查乔木和灌木的种类和数量.乔木物种丰富度的单因素方差分析显示:F=13.0,P=0.000,说明各类岛屿间乔木物种差异极显著.多重比较发现大岛上乔木物种丰富度显著高于小岛和中岛,与对照陆地差别不大;灌木的分析显示:F=1.31,P=0.29,说明小、中、大岛和对照陆地灌木物种丰富度差异不显著.Spearman相关性分析显示乔木物种与岛屿面积显著相关,随岛屿面积增大而增加,而灌木物种相关性不显著.Shannon多样性指数分析表明,无论乔木还是灌木其多样性都是大岛最大,陆地次之,而小岛上灌木多样性指数大于中岛.Simpson优势度和Pielou均匀度分析显示,乔木样地中大岛的物种分布均匀性最好,优势种的优势度最低,而灌木样地中小岛的均匀度最高,优势种的优势度最不明显.  相似文献   

14.
Holocene vegetation changes in response to climate fluctuations and human impacts are reviewed on the basis of pollen analyses from borehole cores taken from the Changjiang (Yangtze River) delta, China, and other previously reported data. During the earliest Holocene (10,930−9000 cal yr BP), the climate was warm and wet, allowing thermophilous hardwoods to occupy mid- and low-elevations surrounding a palaeo-Changjiang estuary. The climate became gradually cooler, and cool-tolerant conifers, grasses and ferns became dominant until 7600 cal yr BP, when the estuary became a delta. A mid-Holocene climatic optimum occurred between 7600 and 4800 cal yr BP, when evergreen and broadleaved deciduous trees flourished at mid- and low-elevations surrounding the delta front-prodelta. After this time, climate became cooler again until 1340 cal yr BP. During this period, evergreen and broadleaved deciduous trees were replaced by conifers and grasses inhabiting the inter/subtidal flat-delta front. This development of conifer-grassland vegetation was shortly interrupted between 3860 and 3200 cal yr BP when thermophilous tree cover increased and open vegetation with scattered conifers was reduced. Since 1340 cal yr BP, the vegetation has been similar to that at present under warm, wet conditions. Human impacts are recognized by the first appearance of Fagopyrum and a sudden increase in herb pollen at 4500 and 1340 cal yr BP, respectively.  相似文献   

15.
Aim Beringia, far north‐eastern Siberia and north‐western North America, was largely unglaciated during the Pleistocene. Although this region has long been considered an ice‐age refugium for arctic herbs and shrubs, little is known about its role as a refugium for boreal trees and shrubs during the last glacial maximum (LGM, c. 28,000–15,000 calibrated years before present). We examine mapped patterns of pollen percentages to infer whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, Alnus/Duschekia) survived the harsh glacial conditions within Beringia. Methods Extensive networks of pollen records have the potential to reveal distinctive temporal–spatial patterns that discriminate between local‐ and long‐distance sources of pollen. We assembled pollen records for 149 lake, peat and alluvial sites from the Palaeoenvironmental Arctic Sciences database, plotting pollen percentages at 1000‐year time intervals from 21,000 to 6000 calibrated years before present. Pollen percentages are interpreted with an understanding of modern pollen representation and potential sources of long‐distance pollen during the glacial maximum. Inferences from pollen data are supplemented by published radiocarbon dates of identified macrofossils, where available. Results Pollen maps for individual taxa show unique temporal‐spatial patterns, but the data for each taxon argue more strongly for survival within Beringia than for immigration from outside regions. The first increase of Populus pollen percentages in the western Brooks Ranges is evidence that Populus trees survived the LGM in central Beringia. Both pollen and macrofossil evidence support Larix survival in western Beringia (WB), but data for Larix in eastern Beringia (EB) are unclear. Given the similar distances of WB and EB to glacial‐age boreal forests in temperate latitudes of Asia and North America, the widespread presence of Picea pollen in EB and Pinus pollen in WB indicates that Picea and Pinus survived within these respective regions. Betula pollen is broadly distributed but highly variable in glacial‐maximum samples, suggesting that Betula trees or shrubs survived in restricted populations throughout Beringia. Alnus/Duschekia percentages show complex patterns, but generally support a glacial refugium in WB. Main conclusions Our interpretations have several implications, including: (1) the rapid post‐glacial migration rate reported for Picea in western Canada may be over estimated, (2) the expansion of trees and shrubs within Beringia should have been nearly contemporaneous with climatic change, (3) boreal trees and shrubs are capable of surviving long periods in relatively small populations (at the lower limit of detection in pollen data) and (4) long‐distance migration may not have been the predominant mode of vegetation response to climatic change in Beringia.  相似文献   

16.
《Palaeoworld》2021,30(3):583-592
Palynological analyses in combination with radiocarbon dating on a Holocene borehole from the Lake Nanyi, Anhui Province, East China demonstrate a well-documented local vegetation evolution since 9000 cal BP, which is the first record of Holocene climate change and human impact in this region. Since 9000 cal BP a mixed evergreen and deciduous broad-leaved forest dominated by Cyclobalanopsis and Quercus developed in this area, indicating a warm climate condition with enhanced insolation. A mixed evergreen and deciduous broad-leaved forest was fully developed between 6600–4500 cal BP, which corresponds to the Holocene Climate Optimum with the strong influence of East Asian summer monsoon (EASM). After 3000 cal BP the broad-leaved forest decreased rapidly, while land herbs and ferns increased. It seems that the climate condition in East China was similar to the present after Holocene Climate Optimum. Pollen results show a potential interface between environment changes and human activities. Pollen diagram demonstrates that human impacts on the natural vegetation remained weak at the early stage but significantly enhanced upwards. The distinctive fluctuations of the pollen contents among AP (trees and shrubs), and the possible agriculture indicators might infer the potential human behaviors for environment changes. Due to the enlargement of organized farming and increase in population, natural forest was eventually replaced by farmland since 3000 cal BP. This study would increase our knowledge of Holocene vegetation transition related to the monsoon dynamics on a long timescale in East China and provide an environmental background for more detailed studies on cultural developments in the middle and lower reaches of the Yangtze River region.  相似文献   

17.
Pollen grains in the atmosphere of Bratislava were quantitatively and qualitatively analysed during an 8-year period (2002–2009) using a Burkard volumetric pollen trap. The mean annual total pollen grain count recorded during this period was 36,608, belonging to 34 higher plant taxa (22 trees and/or shrubs and 12 herbaceous species). The maximum annual total pollen grain count (50,563) was recorded in 2003 and the minimum (14,172) in 2009. The taxa contributing the highest concentration of pollen grains were Betula, Urticaceae, Cupressaceae-Taxaceae, Populus, Pinus, Poaceae and Ambrosia. During the study period, there was a remarkable increase in the number of pollen grains from February to April, with the highest daily mean pollen counts recorded in April. Total pollen concentration began to decrease markedly in May, but there was a second increase between July and August, followed by a decrease in September. The timing and length of the pollen seasons varied. Betula and Poaceae showed a rather constant 2-year fluctuating rhythm. The relationships between airborne pollen concentration and meteorological variables were assessed. Based on these results, the first pollen calendar in Slovakia has been constructed for the area of Bratislava, which provides a great deal of useful and important information.  相似文献   

18.
Detailed botanical (microfossil and macroremain), zoological and geochemical analyses (major and trace elements including C, Al, S, Ca, Fe, P, As, Zn, U, Ba and Rare Earth Elements) of organic deposits provide new insights into Early Holocene environmental change in the Kreekrak area (southwestern Netherlands). The age assessment of the record is based on high resolution AMS 14C wiggle-match dating (WMD). For the first time an AMS 14C WMD based chronology covering the Late Glacial/Holocene transition and early Preboreal is introduced for a site in The Netherlands.The Kreekrak botanical record reflects the end of the Younger Dryas to early Boreal and can be well correlated with pollen records from other sites in The Netherlands and Belgium. The palaeo-topography showed that the Kreekrak deposits formed in an abandoned channel of the River Schelde. Around ca. 11,490 cal BP, at the end of the Late Glacial/Holocene transition, infilling of the lake started with predominantly organic deposits in slowly running water. As a result of the warmer climate the area became forested with birch and poplar during the Friesland Phase (ca. 11,490-11,365 cal BP). Biological productivity of the lake and its surroundings increased. Aquatic vegetation developed in the lake, while shrubs of willow, reed swamps and grasslands fringed the shores. Precipitation increased, which caused a rise in the lake water table and an increase in the supply of oxic surface (= river) water into the Kreekrak lake. During this period, the Kreekrak lake was fed by inflowing river water, run-off, precipitation and seepage of Fe-rich groundwater. Around ca. 11,435 cal BP the water became stagnant probably as result of a total cut-off of the river channel. Inflow of river water ceased, while the supply of reduced Fe-rich groundwater became dominant. During the Rammelbeek Phase (ca. 11,365-11,250 cal BP), the climate was more continental and the abundance of grasslands and open herbaceous vegetation increased. Biological productivity remained high. In the lake, the supply of Fe-rich groundwater continued, the water level slightly decreased but aquatic vegetation remained present. At the end of the Rammelbeek Phase a sudden reduction in the supply of Fe-rich reduced groundwater caused a lowering of the groundwater level in the area, resulting in the development of a hiatus. Due to this hiatus, the Late Preboreal (11,250-10,710 cal BP) is absent from the record. During the early Boreal (10,710-10,000 cal BP) the landscape became densely forested and accumulation of peat in the former lake resumed due to a slowly rising groundwater level. The Boreal was a relatively stable period with low sedimentation rates.The combination of palaeobotanical and geochemical analyses in the Kreekrak record shows a close interrelation between landscape development and geochemistry. It appears that the environmental development of this area during the Late Glacial/Holocene transition and Early Holocene was largely influenced (directly or indirectly) by major climatic changes that occurred during this period, which determined local phenomena such as the composition and density of the vegetation, occurrence of seepage and river activity. Further research of this type has the potential to develop the application of major- and trace element geochemistry in palaeoenvironmental reconstructions.  相似文献   

19.
Five indices are used to quantify the relationship between vegetation and pollen in a mountain range in the arid Great Basin. Computations are based on vegetation coverage and pollen percentages from 63 stands. Association is a measure of whether the presence of the pollen type in a surface sample is an indication of the presence of the parent plant in the local vegetation. Over-representation and under-representation measure tendencies for pollen to occur where the parent plants are absent and vice versa. The correlation coefficient measures the relationship between plant and pollen in stands where both are present. Twenty-nine trees, shrubs, and herbs accurately reflect local vegetation conditions. A percentage diagram shows elevational trends in abundant pollen types. Regional pollen types are used to compute the accumulation rate of pollen in the surface samples. A diagram of pollen accumulation rates shows trends similar to those shown in the percentage diagram. The moss polsters used in this study may collect pollen over a fifteen-year interval.  相似文献   

20.
Five hypotheses were tested to explain the pattern of galling insect species richness in four neotropical savanna physiognomies, 'canga ', 'campo sujo', 'cerrado' s. st., and 'cerradão', that occur in Minas Gerais, southeastern Brazil. We found 125 species of galling insects on 80 host plant species. The increase of plant species richness explained 35% of the variation in galling insect richness, corroborating the plant species richness hypothesis. Most of the galling species occurred on trees, followed by shrubs, and herbs. However, the difference in mean number of galls was only statistically significant between herbs and trees, corroborating partially the plant structural complexity hypothesis. A significant relationship was observed between galling species richness and density of herbs, and shrubs, corroborating partially the resource concentration hypothesis. Galling insect richness showed a negative correlation with magnesium, potassium, and zinc on soil, corroborating the soil fertility hypothesis. The content of magnesium, potassium, iron and CTC (T) explained 72% of the variation in galling insect richness. Plant family size positively influenced galling insect richness, corroborating the plant family size hypothesis. Overall, the results corroborate the hypothesis that predicts that habitat stress is the main factor generating the patterns of galling insect richness in Brazilian savannas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号